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Machine learning, artificial intelligence, and scientific modelling have driven the demand for tools that enable

derivative based optimization. Automatic differentiation (AD) is a family of algorithms used to calculate the

derivatives of programs with only a constant factor slowdown. The utility of AD makes it worthwhile to

implement it in as many languages as possible. Effects and handlers are a powerful programming language

control flow construct based on delimited continuations. They are a structured method of including side effects

into programs, and have found many uses including nondeterminism, state management, and concurrency.

Mainstream programming languages are increasingly incorporating effects and handlers, notably OCaml 5.0.

We show that effects and handlers are a great match for implementing AD algorithms while maintaining

asymptotic efficiency. In particular, effects and handlers allow for succinctness in the presence of the intrinsic

complex control flow of AD. We implement four AD algorithms in OCaml 5.0 using effects and handlers. We

provide benchmarks to empirically show that we can reach the correct asymptotic complexity for forward and

reverse mode AD. Finally, we provide a real-world comparison by adding our implementation to a preexisting

benchmark suite which includes systems such as TensorFlow and PyTorch, and show that our implementation

is competitive with systems based on comparable algorithms.

1 INTRODUCTION
Machine learning, artificial intelligence, scientific modelling, information analysis, and other data

heavy fields have driven the demand for tools which enable derivative based optimization. The

family of algorithms known as automatic differentiation (AD) is the foundation of the tools which

allow automated calculation of derivatives. The family can be coarsely divided into forward mode
and reverse mode. Multiple modes exist because their asymptotics depend on different features of the

differentiated programs. Forward mode AD was introduced in Wengert [1964], and reverse mode

AD was created by Speelpenning [1980] in his thesis. It is not surprising that, given its long history,

AD has been implemented in a variety of ways. The commonality between implementations is the

preservation of the surprising efficiency of AD. Forward and reverse mode AD are only a constant

multiple slower than the program being differentiated, with forward mode being 2 to 2.5 times

slower than the original program, and reverse mode between 3 to 4 times slower. All in all, AD has

experienced widespread adoption, either directly or through tools and systems based upon it.

Given the utility of AD, it is desirable to have implementations of it in as many languages as

possible. However, the implementation strategy is heavily dependent on the language being used.

Furthermore, the problem which AD is being applied to can necessitate the use of a particular

mode of AD, and so the strategy employed must be flexible enough for many variations of AD.

Thus, identifying a suitable set of features in a programming language that can cope with these

varied demands is worthwhile.

Effects and handlers are a structured method of including side-effects into programs, and are

themselves a structured form of delimited continuations. Algebraic effects were introduced in

[G. Plotkin and Power 2001] and handlers for them were introduced in [G. Plotkin and Pretnar

2009]. Effects and handlers can be viewed as an extension of the common feature of catchable

exceptions. Catching an exception terminates the program delimited by the exception handling

code. In contrast, effect handlers can resume the handled code and pass a value to it. Effects and

handlers can implement many common side effects such as state, exceptions, non-determinism,

Author’s address: Jesse Sigal, University of Edinburgh, School of Informatics, Edinburgh, United Kingdom, jesse.sigal@ed.a

c.uk.

2024. ACM 2475-1421/2024/3-ART

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: March 2024.

HTTPS://ORCID.ORG/0000-0002-5117-8752
https://orcid.org/0000-0002-5117-8752
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Jesse Sigal

logging, and input-output. They also support effect abstraction, composition, and program reuse

through the ability of handlers to provide multiple interpretations of an effect. Furthermore, they

provide a unified base in which to implement complex control flow constructs such as coroutines,

generators, and async/await. In each instance, the control is non-local, an aspect in which effects

and handlers excel. These use cases and others have motivated the inclusion of effects and handlers

into mainstream projects such as OCaml [K. Sivaramakrishnan et al. 2021], culminating in their

official inclusion in OCaml 5.0.

The ability of effects and handlers to capture non-local control flow and manage effects make

them an ideal match for implementing AD. An effect can be defined where there is one operation

for each primitive mathematical function, and a handler can be defined for each AD algorithm. The

power of effect abstraction allows a program to be written once against a specified interface and

later executed using any AD algorithm. Compositionality allows ADmodes to be combined to create

new modes. Furthermore, effects and handlers can provide the desired asymptotics for AD. Finally,

they can also be competitive in raw performance with respect to comparable implementations in

other languages using other methods.

Contributions. We make the following contributions in this paper:

• We implement four different AD modes in OCaml 5.0 using effects and handlers (section 3),

and are the first to implement checkpointed reverse mode and tensor-valued operations with

effects and handlers;

• We demonstrate how these modes are succinctly expressed using effects and handlers and

that they are composable (section 3);

• We provide experimental evidence that our implementations, including forward and reverse

mode, have the correct asymptotics (section 4.1); and

• We provide experimental evidence that our reverse mode implementation extended with

tensor-valued operations is competitive with comparable implementations (section 4.2).

In summary, we show how to implement AD with effects and handlers in a modular, composable,

simple, and performant way.

2 BACKGROUND ON AUTOMATIC DIFFERENTIATION
2.1 Deriving Forward and Reverse Modes
Forward and reverse mode AD can be easily derived for pure, straight-line programs. We will do so

by example. We assume that the reader is familiar with partial derivatives of real-valued functions,

as well as matrix-matrix and matrix-vector multiplication. Consider the algebraic definition

𝑧 = ℎ(𝑔(𝑓 (𝑎), 𝑏), 𝑓 (𝑎))

where 𝑎, 𝑏 ∈ R, 𝑓 : R → R, 𝑔, ℎ : R2 → R, and all functions are differentiable. We can rewrite this

as a sequence of calculations using intermediate variables

𝑥 = 𝑓 (𝑎) (1)
𝑦 = 𝑔(𝑥, 𝑏) (2)
𝑧 = ℎ(𝑦, 𝑥) (3)

and consider the sequence as a pure, straight-line program where the variables 𝑎, 𝑏 are inputs and

the variables 𝑥,𝑦, 𝑧 are initialized to 0. We now regard the state of the program at each line as

a five-tuple (𝑎, 𝑏, 𝑥,𝑦, 𝑧) ∈ R5
containing the values of our variables. Thus, each line (𝑖) gives a
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function 𝐹𝑖 : R5 → R5
, i.e.

𝐹1 (𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4) = (𝑣0, 𝑣1, 𝑓 (𝑣0), 𝑣3, 𝑣4)
𝐹2 (𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4) = (𝑣0, 𝑣1, 𝑣2, 𝑔(𝑣2, 𝑣1), 𝑣4)
𝐹3 (𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4) = (𝑣0, 𝑣1, 𝑣2, 𝑣3, ℎ(𝑣3, 𝑣2)).

Our program can then be rewritten to

®𝑥0 = (𝑎, 𝑏, 0, 0, 0)
®𝑥1 = 𝐹1 ( ®𝑥0)
®𝑥2 = 𝐹2 ( ®𝑥1)
®𝑥3 = 𝐹3 ( ®𝑥2)

where ®𝑥3 gives the final state. The multivariate version of differentiation is given by the Jacobian,

which for a differentiable function 𝐹 : R𝑛 → R𝑚 and a point ®𝑥 ∈ R𝑛 we denote by ∇𝐹 ( ®𝑥). The
Jacobian ∇𝐹 ( ®𝑥) is an𝑚 × 𝑛 matrix containing all the partial derivatives of 𝐹 at ®𝑥 . Thus, writing
𝐹 ( ®𝑥) as 𝐹 ( ®𝑥) = (𝑓1 ( ®𝑥), . . . , 𝑓𝑚 ( ®𝑥)) for differentiable functions 𝑓𝑗 : R𝑛 → R, the Jacobian ∇𝐹 ( ®𝑥) is

∇𝐹 ( ®𝑥) :=
©«
𝜕1 𝑓1 ( ®𝑥) · · · 𝜕𝑛 𝑓1 ( ®𝑥)

...
. . .

...

𝜕1 𝑓𝑚 ( ®𝑥) · · · 𝜕𝑛 𝑓𝑚 ( ®𝑥)

ª®®¬
where 𝜕𝑖 is the 𝑖

th
partial derivative operator. The Jacobian satisfies the multivariate chain rule

∇(𝐺 ◦ 𝐹 ) ( ®𝑥) = ∇𝐺 (𝐹 ( ®𝑥)) × ∇𝐹 ( ®𝑥). Therefore, by viewing our program as a composition of state-

transforming functions, namely 𝐹3 ◦ 𝐹2 ◦ 𝐹1, we calculate
∇(𝐹3 ◦ 𝐹2 ◦ 𝐹1) ( ®𝑥0) = ∇𝐹3 ( ®𝑥2) × ∇𝐹2 ( ®𝑥1) × ∇𝐹1 ( ®𝑥0)

where × is matrix-matrix multiplication, and later matrix-vector multiplication as well. The crux of

both forward and reverse mode AD is this calculation, which they each use differently.

For forward mode, we observe that the matrix product can be computed from right-to-left by

𝑋1 = ∇𝐹1 ( ®𝑥0)
𝑋2 = ∇𝐹2 ( ®𝑥1) × 𝑋1

𝑋3 = ∇𝐹3 ( ®𝑥2) × 𝑋2.

It would be inefficient to materialize entire matrices in practice, and so we can pre-multiply by a

vector
®𝑑𝑥0 to obtain

∇(𝐹3 ◦ 𝐹2 ◦ 𝐹1) ( ®𝑥0) × ®𝑑𝑥0 = ∇𝐹3 ( ®𝑥2) × ∇𝐹2 ( ®𝑥1) × ∇𝐹1 ( ®𝑥0) × ®𝑑𝑥0
giving the sequence of vectors

®𝑑𝑥1 = ∇𝐹1 ( ®𝑥0) × ®𝑑𝑥0
®𝑑𝑥2 = ∇𝐹2 ( ®𝑥1) × ®𝑑𝑥1
®𝑑𝑥3 = ∇𝐹3 ( ®𝑥2) × ®𝑑𝑥2 .

Calculating the Jacobian of the function 𝐹1 (𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4) = (𝑣0, 𝑣1, 𝑓 (𝑣0), 𝑣3, 𝑣4) at ®𝑥0, we see

∇𝐹1 ( ®𝑥0) =
©«

1

1

𝜕𝑓 (𝑎) 0

1

1

ª®®®¬
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where 𝜕𝑓 is shorthand for the derivative of 𝑓 : R → R at 𝑎 and empty entries are 0. Similarly,

∇𝐹2 ( ®𝑥1) =
©«
1

1

1

𝜕𝑅𝑔(𝑥, 𝑏) 𝜕𝐿𝑔(𝑥, 𝑏) 0

1

ª®®®¬ ∇𝐹3 ( ®𝑥2) =
©«
1

1

1

1

𝜕𝑅ℎ(𝑦, 𝑥) 𝜕𝐿ℎ(𝑦, 𝑥) 0

ª®®®¬
where 𝜕𝑅𝑔 is the partial derivative of 𝑔 in the right argument and so on. Observe that the Jacobians

are sparse due to each of the 𝐹𝑖 ’s only changing one variable. We now calculate the vectors
®𝑑𝑥𝑖 .

We use the notation
®𝑑𝑥𝑖 [𝑎], ®𝑑𝑥𝑖 [𝑏], ®𝑑𝑥𝑖 [𝑥], ®𝑑𝑥𝑖 [𝑦], and ®𝑑𝑥𝑖 [𝑧] for the 1

st
, 2

nd
, 3

rd
, 4

th
, and 5

th

components respectively. Pairing each vector with the matching line of our original program, we

get

𝑥 = 𝑓 (𝑎) ®𝑑𝑥1 = ( ®𝑑𝑥0 [𝑎], ®𝑑𝑥0 [𝑏], 𝜕𝑓 (𝑎) · ®𝑑𝑥0 [𝑎], ®𝑑𝑥0 [𝑦], ®𝑑𝑥0 [𝑧])

𝑦 = 𝑔(𝑥, 𝑏) ®𝑑𝑥2 = ( ®𝑑𝑥1 [𝑎], ®𝑑𝑥1 [𝑏], ®𝑑𝑥1 [𝑥], 𝜕𝑅𝑔(𝑥, 𝑏) · ®𝑑𝑥1 [𝑏] + 𝜕𝐿𝑔(𝑥, 𝑏) · ®𝑑𝑥1 [𝑥], ®𝑑𝑥1 [𝑧])

𝑧 = ℎ(𝑦, 𝑥) ®𝑑𝑥3 = ( ®𝑑𝑥2 [𝑎], ®𝑑𝑥2 [𝑏], ®𝑑𝑥2 [𝑥], ®𝑑𝑥2 [𝑦], 𝜕𝑅ℎ(𝑦, 𝑥) · ®𝑑𝑥2 [𝑥] + 𝜕𝐿ℎ(𝑦, 𝑥) · ®𝑑𝑥2 [𝑦]) .

Observe that
®𝑑𝑥3 [𝑥] = ®𝑑𝑥2 [𝑥] = ®𝑑𝑥1 [𝑥] because the 𝑥 components of the

®𝑑𝑥𝑖 ’s are only changed

when 𝑥 is assigned to. Thus, we do not need to define a vector
®𝑑𝑥𝑖 at each step, it is sufficient to

only define one new scalar variable. We can therefore rewrite the above as

𝑥 = 𝑓 (𝑎) 𝑑𝑥 = 𝜕𝑓 (𝑎) · 𝑑𝑎
𝑦 = 𝑔(𝑥, 𝑏) 𝑑𝑦 = 𝜕𝑅𝑔(𝑥, 𝑏) · 𝑑𝑏 + 𝜕𝐿𝑔(𝑥, 𝑏) · 𝑑𝑥
𝑧 = ℎ(𝑦, 𝑥) 𝑑𝑧 = 𝜕𝑅ℎ(𝑦, 𝑥) · 𝑑𝑥 + 𝜕𝐿ℎ(𝑦, 𝑥) · 𝑑𝑦

which exactly captures the forward mode algorithm. Namely, each line is paired with a derivative

calculation using the partial derivatives, i.e. 𝑦 = 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) is paired with

𝑑𝑦 =

𝑛∑︁
𝑖=1

𝜕𝑖 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) · 𝑑𝑥𝑖 .

for a fresh variable 𝑑𝑦. Forward mode AD can also be viewed as arithmetic in the ring of truncated

Taylor series [Griewank and A. Walther 2008, Ch. 13].

For reverse mode, we observe that the matrix product can be transformed by transposition

∇(𝐹3 ◦ 𝐹2 ◦ 𝐹1) ( ®𝑥0)⊺ = ∇𝐹1 ( ®𝑥0)⊺ × ∇𝐹2 ( ®𝑥1)⊺ × ∇𝐹3 ( ®𝑥2)⊺

and that this reverses the order of matrix multiplication. We can again calculate right-to-left,

𝑋3 = ∇𝐹3 ( ®𝑥2)⊺

𝑋2 = ∇𝐹2 ( ®𝑥1)⊺ × 𝑋3

𝑋1 = ∇𝐹1 ( ®𝑥0)⊺ × 𝑋2

and similarly opt for pre-multiplying by a vector
®𝛿𝑥4

∇(𝐹3 ◦ 𝐹2 ◦ 𝐹1) ( ®𝑥0)⊺ × ®𝛿𝑥4 = ∇𝐹1 ( ®𝑥0)⊺ × ∇𝐹2 ( ®𝑥1)⊺ × ∇𝐹3 ( ®𝑥2)⊺ × ®𝛿𝑥4
and thus we can define a sequence of intermediate vectors

®𝛿𝑥3 = ∇𝐹3 ( ®𝑥2)⊺ × ®𝛿𝑥4
®𝛿𝑥2 = ∇𝐹2 ( ®𝑥1)⊺ × ®𝛿𝑥3
®𝛿𝑥1 = ∇𝐹1 ( ®𝑥0)⊺ × ®𝛿𝑥2 .

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: March 2024.



Automatic Differentiation via Effects and Handlers

The transposes of the Jacobians

∇𝐹1 ( ®𝑥0)⊺ =

©«
1 𝜕𝑓 (𝑎)
1

0

1

1

ª®®®®®¬
∇𝐹2 ( ®𝑥1)⊺ =

©«
1

1 𝜕𝑅𝑔(𝑥, 𝑏)
1 𝜕𝐿𝑔(𝑥, 𝑏)

0

1

ª®®®®®¬
∇𝐹3 ( ®𝑥2)⊺ =

©«
1

1

1 𝜕𝑅ℎ(𝑦, 𝑥)
1 𝜕𝐿ℎ(𝑦, 𝑥)

0

ª®®®®®¬
are also sparse. Let

®𝛿𝑥𝑖 [𝑎], ®𝛿𝑥𝑖 [𝑏], ®𝛿𝑥𝑖 [𝑥], ®𝛿𝑥𝑖 [𝑦], and ®𝛿𝑥𝑖 [𝑧] for the first, second, third, fourth, and
fifth components of

®𝛿𝑥𝑖 respectively. Calculating with components, we see

®𝛿𝑥3 = ( ®𝛿𝑥4 [𝑎], ®𝛿𝑥4 [𝑏], ®𝛿𝑥4 [𝑥] + 𝜕𝑅ℎ(𝑦, 𝑥) · ®𝛿𝑥4 [𝑧], ®𝛿𝑥4 [𝑦] + 𝜕𝐿ℎ(𝑦, 𝑥) · ®𝛿𝑥4 [𝑧], 0)
®𝛿𝑥2 = ( ®𝛿𝑥3 [𝑎], ®𝛿𝑥3 [𝑏] + 𝜕𝑅𝑔(𝑥, 𝑏) · ®𝛿𝑥3 [𝑦], ®𝛿𝑥3 [𝑥] + 𝜕𝐿𝑔(𝑥, 𝑏) · ®𝛿𝑥3 [𝑦], 0, ®𝛿𝑥3 [𝑧])
®𝛿𝑥1 = ( ®𝛿𝑥2 [𝑎] + 𝜕𝑓 (𝑎) · ®𝛿𝑥2 [𝑥], ®𝛿𝑥2 [𝑏], 0, ®𝛿𝑥2 [𝑦], ®𝛿𝑥2 [𝑧])

and note that each line accumulates derivatives into the arguments of the function used based on

the resulting variable. For example, 𝑥 = 𝑓 (𝑎) adds 𝑓 (𝑎) · ®𝛿𝑥2 [𝑥] to ®𝛿𝑥2 [𝑎]. We can use mutable

variables 𝛿𝑎, 𝛿𝑏, 𝛿𝑥 , and 𝛿𝑦 initialized to 0 to perform the above calculation

𝑥 = 𝑓 (𝑎)
𝑦 = 𝑔(𝑥, 𝑏)
𝑧 = ℎ(𝑦, 𝑥)
𝛿𝑦 += 𝜕𝐿ℎ(𝑦, 𝑥) · 𝛿𝑧, 𝛿𝑥 += 𝜕𝑅ℎ(𝑦, 𝑥) · 𝛿𝑧
𝛿𝑥 += 𝜕𝐿𝑔(𝑥, 𝑏) · 𝛿𝑦, 𝛿𝑏 += 𝜕𝑅𝑔(𝑥, 𝑏) · 𝛿𝑦
𝛿𝑎 += 𝜕𝑓 (𝑎) · 𝛿𝑥

which is exactly reverse mode AD, modulo zeroing out mutable variables. Namely, each line has a

corresponding stateful derivative update which accumulates into the mutable derivative associated

with its arguments, i.e. 𝑦 = 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) is paired with

𝛿𝑥1 += 𝜕𝑖 𝑓 (𝑥1, . . . , 𝑥𝑛) · 𝛿𝑦, . . . , 𝛿𝑥𝑛 += 𝜕𝑛 𝑓 (𝑥1, . . . , 𝑥𝑛) · 𝛿𝑦
in the reverse order of the original program.

2.2 Automatic Differentiation in Practice
Automatic differentiation can be broadly categorized by mode (i.e. the specific algorithm) and

implementation strategy. Some popular systems use a domain-specific language (DSL) strategy

where the user specifies a computation graph which is then the main object from which derivatives

are calculated. The computation graph and resulting derivative graph are often optimized after

construction. The DSL can either be fine-grained (operator level), or coarse-grained (computational

module or model level). The operator level encompasses basic scalar operations such as addition

and multiplication and tensor operations such as summing along a dimension and taking slices. On

the other hand, the module level includes examples such as fully-connected neural networks and

convolutional layers. Examples of fine-grained systems are Theano [Theano Development Team

2016], CNTK [Seide and Amit Agarwal 2016], and TensorFlow [Abadi, Ashish Agarwal, et al. 2015]

and examples of coarse-grained systems are Torch7 [Collobert and Kavukcuoglu 2011] and Caffe

[Jia et al. 2014]. The computation graph approach, while useful, is usually limited to a subset of

the host languages expressiveness. Thus, computation graph DSLs are generally considered to be

algorithmic differentiation but not automatic differentiation, although this distinction is somewhat

artificial.
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Forward and reverse mode are the main categories of AD. There are also variations of these

main modes; we list some examples.

• Sparse versions of forward and reverse mode take advantage the of structure of the program

and requested results to perform less computation [Griewank and A. Walther 2008, Ch. 7].

• Reverse mode has a memory footprint which is linear in the length of the calculation, and

so there exists a checkpointed form which re-runs portions of the original program in

exchange for a lower memory footprint [Griewank and A. Walther 2008, Ch. 12][Hascoët

and Araya-Polo 2006].

• Forward and reverse mode are in fact extreme choices on a spectrum. A given first-order

program can be viewed as directed acyclic graph with mathematical operations as nodes and

data dependencies as edges. AD can then be defined in terms of edge and face eliminations on

this graph, with forward and reverse mode being extremal choices in the order of elimination.

[Griewank and A. Walther 2008, Ch. 9]

• Forward mode can be derived from truncating Taylor series at their linear terms. Thus,

truncating at higher-order terms allows for method similar to forward mode which calculates

higher-order derivatives. [Griewank and A. Walther 2008, Ch. 13] [Barak A Pearlmutter and

Jeffrey Mark Siskind n.d.]

• Forward and reverse mode can also be layered on top of each other in order to compute

higher-order derivatives [Barak A Pearlmutter and Jeffrey M Siskind n.d.][Betancourt 2018].

Beyond the mode used, there are various non-DSL implementation strategies for AD. A useful

categorization is into elemental, compiler-based, source transformations, and operator overloading

[Baydin et al. 2018]. Elemental methods consist of programming with substitute mathematical

functions defined by an AD library. Elemental AD is the simplest method to provide when the

language does not support operator overloading. Examples include WCOMP and UCOMP [Lawson

1971]. Compiler-based AD uses special purpose compilers to generate derivative code during

compilation. Examples include Stalingrad [Barak A. Pearlmutter and Jeffrey Mark Siskind 2008],

Tangent [Merriënboer et al. 2017], SLANG [Thames 1969], and PROSE [Pfeiffer 1987]. Source

transformation methods take program text and generates new program text containing the old

code which also computes derivatives. Examples include ADIFOR [C. Bischof et al. 1996], ADIC

[C. H. Bischof et al. 1997], and Tapenade [Hascoët and Pascual 2013; Pascual and Hascoët 2008].

Finally, operator overloading simply overloads the chosen mathematical functions to effectively

perform the elemental method more ergonomically. Examples include ADOL-C [Andrea Walther

2009], the ad package for Python
1
, the ad package for Haskell

2
, and the DiffSharp package for F#

and C# [Baydin et al. 2018].

The last distinction we make cuts across our other categorizations. Some AD systems are define-
then-run, or static, whereby a the program written is statically analyzed and transformed into a

new program. Static approaches include DSL and source transformation techniques, and are often

the fastest methods due to optimization opportunities. Other AD systems are define-by-run, or
dynamic, where the derivative is calculated as the defined program runs. Dynamic approaches

are usually slower but more flexible and interactive, and includes methods such as elemental and

operator overloading techniques.

1
https://pypi.org/project/ad/

2
https://hackage.haskell.org/package/ad
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3 AUTOMATIC DIFFERENTIATION VIA EFFECTS AND HANDLERS BY EXAMPLE
3.1 Framework
We will assume the reader has a basic familiarity with algebraic effects and handlers. For a tutorial

on algebraic effects we suggest [Bauer 2019] and for effect handlers we suggest [Pretnar 2015].

A function 𝑓 : R𝑛 → R𝑚 is called smooth when it has all partial derivative of all orders, meaning

that the partial derivatives and Jacobian of such an 𝑓 are also smooth. Thus, smooth functions are

closed under differentiation, and are the natural class to consider when creating compositional

AD algorithms. Of course, we cannot express all smooth functions, and so we choose a subset

of smooth functions closed under differentiation as a family. The minimal collection of smooth

functions is addition, multiplication, and constant functions taking values in the non-negative

integers. For example, because we include the function sin(𝑥), we also include the function cos(𝑥)
because

𝜕/𝜕𝑥 (sin(𝑥)) = cos(𝑥). Alternatively, because cos(𝑥) = sin(𝑥 + 𝜋/2), we could leave cos(𝑥)
out, but in practice redundant functions are included for clarity and numerical considerations. A

further practical choice is the inclusion of division, which is undefined when dividing by 0, but is

smooth everywhere else.

We begin by opening the Effectmodule from the standard library to access effects and handlers.

We then define data types enumerating what family of functions we wish to use, split by the number

of arguments each function takes. Furthermore, we define a helper data type arg for specifying
argument position of binary functions. Next, we define our effect and helper functions, collected

into a module type named SMOOTH. The helper functions include overloaded operators, convenience
functions for calling the smooth effect, and implementations of derivatives.

1 open Effect (* Access effect and handler interface *)

2

3 type nullary = Const of float (* Nullary functions *)

4 type unary = Negate | Sin | Cos | Exp (* Unary functions *)

5 type binary = Plus | Subtract | Times | Divide (* Binary functions *)

6

7 type arg = L | R (* Left or right argument of a binary function *)

8

9 module type SMOOTH = sig (* Module type for smooth function effect *)

10 type t (* Number type *)

11 type _ Effect.t += Ap0 : nullary -> t Effect.t (* Apply nullary *)

12 | Ap1 : unary * t -> t Effect.t (* Apply unary *)

13 | Ap2 : binary * t * t -> t Effect.t (* Apply binary *)

14

15 val c : float -> t (* --- Begin helper functions --- *)

16 val ( ~. ) : t -> t

17 val sin_ : t -> t

18 val cos_ : t -> t

19 val exp_ : t -> t

20 val ( +. ) : t -> t -> t

21 val ( -. ) : t -> t -> t

22 val ( *. ) : t -> t -> t

23 val ( /. ) : t -> t -> t

24

25 val ap0 : nullary -> t

26 val ap1 : unary -> t -> t

27 val ap2 : binary -> t -> t -> t (* ---- End helper functions ---- *)

28
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29 val der1 : unary -> t -> t (* Derivative of unary functions *)

30 val der2 : binary -> arg -> t -> t -> t (* Derivative of binary functions *)

31 end

The SMOOTH module type includes a type t on line 10, which will allow for the composition

of different modes of AD via different instantiations. For example, in forward mode it will be

instantiated to a pair consisting of a value and a derivative, and in reverse mode a pair of a value

and a reference to a mutable derivative. We define our effect on lines 11 to 13 by augmenting the

Effect.t extensible variant with Ap0, Ap1, and Ap2. Each constructor corresponds to applying an

𝑛-ary operation. Lines 15 to 27 declare helper functions for using these effects. Finally, lines 29

and 30 declare the derivatives of unary and binary functions.

We can now define the implementation. Each helper function uses the perform function from

the Effect module to perform the given effect.

33 module Smooth (T : sig type t end) : SMOOTH with type t = T.t = struct

34 type t = T.t (* Use the passed in type *)

35 type _ Effect.t += Ap0 : nullary -> t Effect.t

36 | Ap1 : unary * t -> t Effect.t

37 | Ap2 : binary * t * t -> t Effect.t

38

39 let c x = perform (Ap0 (Const x))

40 let ( ~. ) a = perform (Ap1 (Negate , a))

41 let sin_ a = perform (Ap1 (Sin , a))

42 let cos_ a = perform (Ap1 (Cos , a))

43 let exp_ a = perform (Ap1 (Exp , a))

44 let ( +. ) a b = perform (Ap2 (Plus , a, b))

45 let ( -. ) a b = perform (Ap2 (Subtract , a, b))

46 let ( *. ) a b = perform (Ap2 (Times , a, b))

47 let ( /. ) a b = perform (Ap2 (Divide , a, b))

48

49 let ap0 n = perform (Ap0 n)

50 let ap1 u x = perform (Ap1 (u, x))

51 let ap2 b x y = perform (Ap2 (b, x, y))

52

53 let der1 u x = match u with (* 𝜕
𝜕𝑥

(𝑢 (𝑥 ) ) *)

54 | Negate -> ~. (c 1.0) (* 𝜕/𝜕𝑥 (−𝑥 ) = −1 *)

55 | Sin -> cos_ x (* 𝜕/𝜕𝑥 (sin(𝑥 ) ) = cos(𝑥 ) *)

56 | Cos -> ~. (sin_ x) (* 𝜕/𝜕𝑥 (cos(𝑥 ) ) = − sin(𝑥 ) *)

57 | Exp -> exp_ x (* 𝜕/𝜕𝑥 (𝑒𝑥 ) = 𝑒𝑥 *)

58 let der2 b arg x y = match b with (* 𝜕
𝜕𝑥arg

(𝑏 (𝑥𝐿, 𝑥𝑅 ) ), for 𝑥𝐿 = x, 𝑥𝑅 = y *)

59 (* 𝜕/𝜕𝑥 (𝑥 + 𝑦) = 1, 𝜕/𝜕𝑦 (𝑥 + 𝑦) = 1 *)

60 | Plus -> (match arg with L -> c 1.0 | R -> c 1.0)

61 (* 𝜕/𝜕𝑥 (𝑥 − 𝑦) = 1, 𝜕/𝜕𝑦 (𝑥 − 𝑦) = −1 *)

62 | Subtract -> (match arg with L -> c 1.0 | R -> c (-1.0))

63 (* 𝜕/𝜕𝑥 (𝑥 · 𝑦) = 𝑦, 𝜕/𝜕𝑦 (𝑥 · 𝑦) = 𝑥 *)

64 | Times -> (match arg with L -> y | R -> x)

65 (* 𝜕/𝜕𝑥 (𝑥/𝑦) = 1/𝑦, 𝜕/𝜕𝑦 (𝑥/𝑦) = − 𝑥/𝑦2 *)

66 | Divide -> (match arg with L -> (c 1.0) /. y | R -> (~. x) /. (y *. y))

67 end

The helper function c on line 39 embeds any float into our numeric type. As a constant function,

its derivative is 0, and so we have no der0 function.
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3.2 Evaluation Mode
Our first handler will interpret our smooth functions using floating point numbers. The Evaluate
module is a super type of the SMOOTH module type by virtue of including the Smooth module with

the number type Smooth.t instantiated to float. Later modules will be functors which accept

SMOOTH type modules, allowing compositionality with Evaluate as the base case.

1 open Effect.Deep (* Access effect and (deep) handler interface *)

2 open Float (* Floating point operations *)

3 open Smooth (* Smooth function effect and helper functions *)

4

5 module Evaluate = struct

6 (* Include smooth function effect with number type equal to `float ` *)

7 include Smooth (struct type t = float end)

8

9 (* Handle a smooth function with the corresponding `float ` operation *)

10 let (evaluate : ('a, 'a) handler) = {

11 retc = (fun x -> x); (* Do nothing with returned value *)

12 exnc = raise; (* Re-raise encountered exceptions *)

13 effc = (fun (type x) (eff : x Effect.t) ->

14 match eff with (* Match the intercepted effect *)

15 | Ap0 n -> Some (fun (k : (x, 'a) continuation) ->

16 match n with

17 | Const x -> continue (k : (float , 'a) continuation) x

18 )

19 | Ap1 (u, x) -> Some (fun k ->

20 match u with

21 | Negate -> continue k (neg x)

22 | Sin -> continue k (sin x)

23 | Cos -> continue k (cos x)

24 | Exp -> continue k (exp x)

25 )

26 | Ap2 (b, x, y) -> Some (fun k ->

27 match b with

28 | Plus -> continue k (add x y)

29 | Subtract -> continue k (sub x y)

30 | Times -> continue k (mul x y)

31 | Divide -> continue k (div x y)

32 )

33 | _ -> None (* Do not handle the effect if not a smooth effect *)

34 )

35 }

36 end

Line 7 includes the Smooth module, meaning that our effects and helper functions, with t set to

float, are part of Evaluate. Line 10 defines the evaluate handler. The type ('a, 'a) handler
describes a handler which can handle a computation which returns an arbitrary type 'a and returns
a value of type 'a. A handler in OCaml consists of three parts: the return clause retc, the exception
clause exnc, and the effect clause effc. The return clause defines a transformation on the return

value of the handled computation. Next, exception clause prescribes what occurs when an exception

is encountered. Finally, the effect clause lets us match on on the effect being handled. In evaluate,
the return and exception clauses are trivial.
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Let us examine the effect clause of evaluate. It consists of a function with argument eff, the
effect being handled, and possibly returns a function consuming a continuation. A value of None
indicates the current handler does not wish to intercept the effect, while a value of Some (fun k
-> ...) returns a function to consume the intercepted effect through use of the continuation k. We

intercept each of Ap0, Ap1, and Ap2, consuming the continuation kwith the continue function from
Effect.Deep and passing to k the result applying the corresponding float function. By specifying
a deep handler, all subsequent uses of the matched effects will also be handled by evaluate.

The Evaluate module can be used to create an effectful computation which can be handled by

evaluate. Consider the following snippet.

1 let _ =

2 let open Evaluate in

3 let sqr x = x *. x in (* Square argument using effectful operation *)

4 let res = (match_with : ('c -> 'a) -> 'c -> ('a, 'b) handler -> 'b)

5 (* Effectful computation to handle *)

6 (fun (twice , x) -> if twice then sqr (sqr x) else sqr x)

7 (true , 5.0) (* Argument to computation *)

8 evaluate (* Handler for computation *)

9 in

10 Printf.printf "%f\n" res (* Prints "625.000000"= 5
4 *)

We begin by opening the Evaluate module and defining an effectful function sqr which squares

its argument. In order to compute with sqr, we must run it in the context of evaluate, which is

achieved with the match_with function from Effect.Deep. The first argument is the computation

to be handled, in which we choose to use sqr once or twice, the second argument gives the

input to the computation, and the third specifies which handler to use. The result res is 625.0
(= 5

4
) as expected. Thus, the evaluate handler has dynamically interpreted the *. operation as

multiplication on floats. We have now seen how to add a new effect, create a handler for effects,

and run a computation using a specified handler in OCaml 5.0.

3.3 Forward Mode
Our next example is forward mode AD. The forward mode implementation will take the form of

an OCaml functor, i.e. a module-level function, taking as input a SMOOTH module and producing a

module which is a SMOOTH super-type. As illustrated in section 2.1 in the derivation of forward mode,

each smooth function will now operate on a pair of values, the original value and its derivative.

Thus, we define a data type of paired numbers, and make it parameterized to allow nesting of AD.

The implementation of the forward mode handler is then a straightforward transcription of the

algorithm.

1 open Effect.Deep (* Access effect and (deep) handler interface *)

2 open Smooth (* Smooth function effect and helper functions *)

3

4 type 't paired = {v : 't; dv : 't} (* A value paired with its derivative *)

5

6 (* Perform forward mode w.r.t. an interpretation of reals given by T *)

7 module Forward (T : SMOOTH) = struct

8 (* Include helper functions and effects instantiated with paired numbers *)

9 include Smooth (struct type t = T.t paired end)

10

11 (* Handler for forward mode *)

12 let (forward : ('a, 'a) handler) = {

13 retc = (fun x -> x); (* Do nothing with returned value *)
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14 exnc = raise; (* Re-raise encountered exceptions *)

15 effc = (fun (type a) (eff : a Effect.t) ->

16 match eff with

17 | Ap0 n -> Some (fun (k : (a, _) continuation) -> let open T in

18 (* 𝑣 = 𝑛, 𝑑𝑣 = 0 *)

19 continue k {v = ap0 n; dv = c 0.0}

20 )

21 | Ap1 (u, x) -> Some (fun k -> let open T in

22 (* 𝑣 = 𝑢 (𝑥 ), 𝑑𝑣 = 𝜕𝑢 (𝑥 ) · 𝑑𝑥 *)

23 continue k {v = ap1 u x.v; dv = der1 u x.v *. x.dv}

24 )

25 | Ap2 (b, x, y) -> Some (fun k -> let open T in

26 (* 𝑣 = 𝑏 (𝑥, 𝑦), 𝑑𝑣 = 𝜕𝐿𝑏 (𝑥, 𝑦) · 𝑑𝑥 + 𝜕𝑅𝑏 (𝑥, 𝑦) · 𝑑𝑦 *)

27 continue k {v = ap2 b x.v y.v; dv = (der2 b L x.v y.v *. x.dv) +.

28 (der2 b R x.v y.v *. y.dv)}

29 )

30 | _ -> None

31 )

32 }

33

34 (* diff f x = 𝜕f(𝑧)
𝜕𝑧

(x) *)

35 let diff (f : T.t paired -> T.t paired) (x : T.t) =

36 let res = match_with f {v = x; dv = T.c 1.0} forward in res.dv

37 end

Line 4 defines the paired data type. Line 7 defines the Forwardmodule, which now takes a SMOOTH
module T. As before, we include the Smoothmodule (line 9), this time instantiating the number type

with paired numbers based on T’s number type to allow nesting. We define the forward handler
from line 12. Each case in the effect clause implements the forward mode rule; note how we open T
each time so that the calculations are with respect to T. Finally, we define a helper function diff
starting on line 35 which uses forward to calculate the derivative of a function f which operates

on paired numbers. Note that f must be defined only using the combinators provided by Smooth,
e.g. sin_ and +., and not by destructuring the paired data type or else an invalid derivative may

be calculated.

The following is an example of how to use Forward by composing the forward handler inside
diff with our previously defined evaluate handler.

1 let _ =

2 let module E = Evaluate in

3 let module F = Forward(E) in (* Instantiate forward mode with floats *)

4 let sqr x = F.(x *. x) in (* Square argument using operation from F *)

5 let res = match_with

6 (fun (twice , y) -> F.diff (fun x -> if twice then sqr (sqr x) else sqr x) y)

7 (true , 5.0)

8 E.evaluate

9 in

10 Printf.printf "%f\n" res (* Prints "500.000000"= 4 · 53 = 𝜕 (𝑥4 )
𝜕𝑥

(5) ) *)

Line 3 instantiates Forwardwith Evaluate, allowing the diff function to be handledwith evaluate
and produce a float result. Note that the sqr function is defined using operations from F, allowing
it to be used as an argument to F.diff. Our next example shows that we can also instantiate

Forward with itself to calculate second derivatives.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: March 2024.



Jesse Sigal

1 let _ =

2 let module E = Evaluate in

3 let module F = Forward(E) in (* Instantiate forward mode with floats *)

4 let module FF = Forward(F) in (* Instantiate forward mode with forward mode *)

5 let sqr x = FF.(x *. x) in (* Square argument using operation from FF *)

6 let res = match_with (fun (twice , z) ->

7 F.diff (fun y ->

8 FF.diff (fun x -> if twice then sqr (sqr x) else sqr x) y

9 ) z

10 ) (true , 5.0) E.evaluate

11 in

12 Printf.printf "%f\n" res (* Prints "300.000000"= 12 · 52 = 𝜕2 (𝑥4 )
𝜕𝑥2

(5) *)

Note that when we define sqr here, we must use operations from FF. To avoid redefining sqr every
time, we can create a functor

module Sqr (T : SMOOTH) = struct

let sqr x = T.(x *. x)

end

and instantiate it as needed.

3.4 Reverse Mode
Recall our example from section 2.1:

𝑥 = 𝑓 (𝑎) (1)
𝑦 = 𝑔(𝑥, 𝑏) (2)
𝑧 = ℎ(𝑦, 𝑥) (3)

The reverse mode algorithm applied to this program can be viewed as being applied recursively

from the first line onwards, where the lines responsible for derivative accumulation are prepended

𝑥 = 𝑓 (𝑎) (1𝑎)
· · ·

𝛿𝑎 += 𝜕𝑓 (𝑎) · 𝛿𝑥 (1𝑏)
→

𝑥 = 𝑓 (𝑎) (1𝑎)
𝑦 = 𝑔(𝑥, 𝑏) (2𝑎)
· · ·

𝛿𝑥 += 𝜕𝐿𝑔(𝑥, 𝑏) · 𝛿𝑦 (2𝑏)
𝛿𝑏 += 𝜕𝑅𝑔(𝑥, 𝑏) · 𝛿𝑦 (2𝑏)
𝛿𝑎 += 𝜕𝑓 (𝑎) · 𝛿𝑥 (1𝑏)

→

𝑥 = 𝑓 (𝑎) (1𝑎)
𝑦 = 𝑔(𝑥, 𝑏) (2𝑎)
𝑧 = ℎ(𝑦, 𝑥) (3𝑎)
𝛿𝑦 += 𝜕𝐿ℎ(𝑦, 𝑥) · 𝛿𝑧 (3𝑏)
𝛿𝑥 += 𝜕𝑅ℎ(𝑦, 𝑥) · 𝛿𝑧 (3𝑏)
𝛿𝑥 += 𝜕𝐿𝑔(𝑥, 𝑏) · 𝛿𝑦 (2𝑏)
𝛿𝑏 += 𝜕𝑅𝑔(𝑥, 𝑏) · 𝛿𝑦 (2𝑏)
𝛿𝑎 += 𝜕𝑓 (𝑎) · 𝛿𝑥 (1𝑏)

where the ellipsis represents the program yet to be consumed. This formulation can be used to write

a reverse mode handler, and we believe was first recorded by [K. C. Sivaramakrishnan 2018], which

itself was inspired by the approach of [F. Wang, Zheng, et al. 2019] based on delimited control

operators. Our implementation is essentially that of K. C. Sivaramakrishnan with the addition of

more operations and the modular approach using functors we are instituting.

We begin by defining a new data type of paired numbers where the derivative is mutable. Next,

we define a functor which takes a SMOOTH module, which includes the Smooth modules as before.

The handler we define dynamically creates the reverse pass while handling through control flow

by running code after resuming the captured continuation. Finally, we define a helper function to

calculate derivatives.
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1 open Effect.Deep (* Access effect and (deep) handler interface *)

2 open Smooth (* Smooth function effect and helper functions *)

3

4 type 't mpaired = {v : 't; mutable dv : 't} (* Value with mutable derivative *)

5

6 (* Perform reverse mode w.r.t. an interpretation of reals given by T *)

7 module Reverse (T : SMOOTH) = struct

8 include Smooth (struct type t = T.t mpaired end)

9

10 (* Handler for reverse mode *)

11 let (reverse : (unit , unit) handler) = {

12 retc = (fun x -> x); (* Do nothing with returned value *)

13 exnc = raise; (* Re-raise encountered exceptions *)

14 effc = (fun (type a) (eff : a Effect.t) ->

15 match eff with

16 | Ap0 n -> Some (fun (k : (a, _) continuation) -> let open T in

17 continue k {v = ap0 n; dv = c 0.0} (* 𝑟 = 𝑛, 𝛿𝑟 = 0 *)

18 )

19 | Ap1 (u, x) -> Some (fun k -> let open T in

20 let r = {v = ap1 u x.v; dv = c 0.0} in (* 𝑟 = 𝑢 (𝑥 ), 𝛿𝑟 = 0 *)

21 continue k r; (* Rest of the program *)

22 x.dv <- x.dv +. (der1 u x.v *. r.dv) (* 𝛿𝑥 += 𝜕𝑢 (𝑥 ) · 𝛿𝑟 *)

23 )

24 | Ap2 (b, x, y) -> Some (fun k -> let open T in

25 let r = {v = ap2 b x.v y.v; dv = c 0.0} in (* 𝑟 = 𝑏 (𝑥, 𝑦), 𝛿𝑟 = 0 *)

26 continue k r; (* Rest of the program *)

27 x.dv <- x.dv +. (der2 b L x.v y.v *. r.dv); (* 𝛿𝑥 += 𝜕𝐿𝑏 (𝑥, 𝑦) · 𝛿𝑟 *)

28 y.dv <- y.dv +. (der2 b R x.v y.v *. r.dv) (* 𝛿𝑦 += 𝜕𝑅𝑏 (𝑥, 𝑦) · 𝛿𝑟 *)

29 )

30 | _ -> None

31 )

32 }

33

34 (* grad f x = 𝜕f(𝑧)
𝜕𝑧

(x) *)

35 let grad (f : T.t mpaired -> T.t mpaired) (x : T.t) =

36 let r = {v = x; dv = T.c 0.0} in

37 (* Set the output derivative to 1 to get derivative of f *)

38 match_with (fun x -> (f x).dv <- T.c 1.0) r reverse;

39 r.dv

40 end

Line 4 defines the paired data type, line 7 defines the Reverse module, which takes a SMOOTH
module. We define the reverse handler from line 11. Each case in the effect clause implements the

reverse mode rule. The calls to continue on line 21 and line 26 run the remainder of the program,

the ellipsis in our example. Finally, we define a helper function grad on line 35. To calculate the

derivative of f, we must set its derivative to 1 on line 37. Note again that f must be defined only

using the combinators provided by Smooth and not by destructuring the mpaired data type.

The following is an example of how to use Reverse.

1 let _ =

2 let module E = Evaluate in

3 let module R = Reverse(E) in (* Instantiate reverse mode with floats *)
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4 let sqr x = R.(x *. x) in (* Square argument using operation from R *)

5 let res = match_with

6 (fun (twice , y) -> R.grad (fun x -> if twice then sqr (sqr x) else sqr x) y)

7 (true , 5.0)

8 E.evaluate

9 in

10 Printf.printf "%f\n" res (* Prints "500.000000"= 4 · 53 = 𝜕 (𝑥4 )
𝜕𝑥

(5) ) *)

Line 3 instantiates Reversewith Evaluate, allowing the grad function to be handledwith evaluate
and produce a float result. Our next example shows that we can also instantiate Reverse with
Forward calculate second derivatives.

1 let _ =

2 let module E = Evaluate in

3 let module F = Forward(E) in (* Instantiate forward mode with floats *)

4 let module RF = Reverse(F) in (* Instantiate reverse mode with forward mode *)

5 let sqr x = RF.(x *. x) in (* Square argument using operation from RF *)

6 let res = match_with (fun (twice , z) ->

7 F.diff (fun y ->

8 RF.grad (fun x -> if twice then sqr (sqr x) else sqr x) y

9 ) z

10 ) (true , 5.0) E.evaluate

11 in

12 Printf.printf "%f\n" res (* Prints "300.000000"= 12 · 52 = 𝜕2 (𝑥4 )
𝜕𝑥2

(5) *)

The module RF implements the so-called forward-over-reverse mode. It is often used to calculated

the product of Hessian matrices with vectors; the Hessian is as to second derivatives as the Jacobian

is to first derivatives. Finally, it is of course possible to do arbitrary compositions of forward and

reverse mode together.

3.5 Taped Reverse Mode
Our reverse mode handler accumulates to derivatives after continuing the computation. The

structure of the accumulations is the same each time, and so easily transformed into data. Thus,

we can defer these accumulations during handling by recording their need in a data structure and

then run them in the correct order after handling the effectful program. The data structure is called

the tape and method of explicitly recording deferred derivative accumulations into a tape is called

taping. Thus, the tape records the data dependency of operations, and so is essentially a directed

acyclic graph recorded as a list of nodes in a topological sort defined by execution. We will see that

our taped reverse mode handler calls continue in the tail position, which can enable optimizations.

Furthermore, there are special cases when the tape from a particular execution can be re-used,

thereby saving computation.

In order to record the dependencies in the derivative accumulations, we define a new effect for

fresh name generation. A name is merely a wrapper around an int, and we will use these integers

to index into array when calculating the deferred accumulations.

1 open Effect.Deep (* Access effect and (deep) handler interface *)

2 open Effect (* Ditto , contains `perform ` *)

3 open Smooth (* Smooth function effect and helper functions *)

4 open Array (* Mutable arrays *)

5

6 type name = {get_value : int} (* Name data type for fresh names *)

7
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8 module type FRESH = sig (* Module type for fresh name effect *)

9 type _ Effect.t += Fresh : unit -> name Effect.t (* Generate fresh name *)

10 val fresh : unit -> name (* Helper function *)

11 end

12

13 module Fresh : FRESH = struct

14 type _ Effect.t += Fresh : unit -> name Effect.t

15 let fresh () = perform (Fresh ())

16 end

Next, we define a new paired type of a value with a named derivative. The name will be used to

record dependencies on the tape. As an optimization, we make this name optional, where a value
of none is used for constants and values which transitively depend only on constants. We do not

need to calculate their derivatives as they are always 0.

18 type 't npaired = {v : 't; dv : name option} (* Value with named derivative *)

The tape itself will be a list of deferred accumulations, and so we define a defer data type to be
its elements. Because we have unary and binary operations, we either defer a single or doubles

dependency; binary operations can depend on one non-constant derivative and so can also have a

single dependency.

20 type 't defer (* Defer an accumulation while recording dependency and value *)

21 = Single of name * 't (* Single dependency , save derivative *)

22 | Double of name * name * 't * 't (* Double dependency , save derivatives *)

We can now begin to define taped reverse mode. We define a simple handler for generating fresh

names that maintains a mutable int counter, incrementing it each time a new name is generated,

and returning its final value when the handled computation returns.

24 (* Perform taped reverse mode w.r.t. an interpretation of reals given by T *)

25 module Reverse_tape (T : SMOOTH) = struct

26 include Smooth (struct type t = T.t npaired end)

27 include Fresh (* Access the fresh effect *)

28

29 let increment_name (init : int) = (* Handle fresh names by incrementing *)

30 let i = ref init in { (* Create counter to track generated names *)

31 retc = (fun x -> (!i, x)); (* Return updated counter with value *)

32 exnc = raise; (* Re-raise encountered exceptions *)

33 effc = (fun (type a) (eff : a Effect.t) ->

34 match eff with

35 | Fresh () -> Some (fun (k : (a, _) continuation) ->

36 let t = !i in (* Get fresh value *)

37 i := !i + 1; (* Update value *)

38 continue k {get_value = t} (* Return fresh name*)

39 )

40 | _ -> None

41 )

42 }

The taped reverse mode handler begins by allocating the tape, which will be returned when the

handled computation completes. For each operation being handled, we check if each argument

it transitively dependant solely on constants, and for those which are not, we prepend the opera-

tions dependency on said arguments along with the pertinent derivative. We then continue the

computation after creating a fresh derivative for the result of the operation.
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44 let reverse () = (* Handler for taped reverse mode *)

45 (* Initialize a mutable tape , i.e. list of dependencies via `defer `s *)

46 let tape : T.t defer list ref = ref [] in let open Fresh in {

47 retc = (fun x -> (!tape , x)); (* Return updated tape with value *)

48 exnc = raise; (* Re-raise encountered exceptions *)

49 effc = (fun (type a) (eff : a Effect.t) ->

50 match eff with

51 | Ap0 n -> Some (fun (k : (a, _) continuation) -> let open T in

52 continue k {v = ap0 n; dv = None} (* Calculate value , no dep. *)

53 )

54 | Ap1 (u, x) -> Some (fun k -> let open T in

55 let res = ap1 u x.v in (* Calculate value *)

56 match x.dv with

57 | None -> continue k {v = res; dv = None} (* No dependency *)

58 | Some nx ->

59 (* Do 𝛿𝑥 += 𝜕𝑢 (𝑥 ) · 𝛿𝑟 later *)

60 tape := Single (nx, der1 u x.v) :: (!tape);

61 continue k {v = res; dv = Some (fresh ())} (* New derivative *)

62 )

63 | Ap2 (b, x, y) -> Some (fun k -> let open T in

64 let res = ap2 b x.v y.v in (* Calculate value *)

65 match (x.dv, y.dv) with

66 | (None , None) -> continue k {v = res; dv = None} (* No dep. *)

67 | (Some nx, None) ->

68 (* Do 𝛿𝑥 += 𝜕𝐿𝑏 (𝑥, 𝑦) · 𝛿𝑟 later *)

69 tape := Single (nx, der2 b L x.v y.v) :: (!tape);

70 continue k {v = res; dv = Some (fresh ())} (* New derivative *)

71 | (None , Some ny) ->

72 (* Do 𝛿𝑦 += 𝜕𝑅𝑏 (𝑥, 𝑦) · 𝛿𝑟 later *)

73 tape := Single (ny, der2 b R x.v y.v) :: (!tape);

74 continue k {v = res; dv = Some (fresh ())} (* New derivative *)

75 | (Some nx, Some ny) ->

76 tape := (* Do 𝛿𝑦 += 𝜕𝑅𝑏 (𝑥, 𝑦) · 𝛿𝑟 and 𝛿𝑦 += 𝜕𝑅𝑏 (𝑥, 𝑦) · 𝛿𝑟 later *)

77 Double (nx, ny, der2 b L x.v y.v, der2 b R x.v y.v) :: (!tape);

78 continue k {v = res; dv = Some (fresh ())} (* New derivative *)

79 )

80 | _ -> None

81 )

82 }

We begin by allocating reference cell containing a new tape on line 46 for each use of the handler.

The tape is returned on line 47 in the return clause. Handling nullary operations just calculates

the necessary value. For unary operations, we have two cases, either no dependency or a single

dependency. In the later case, we record the deferred accumulation on line 60 and return the result

paired with a fresh named derivative. For binary operations, we have four cases for dependencies.

We record deferred accumulations as necessary, for example on line line 77 we record a double

dependency.

The taped reverse mode handler requires more from its helper function than our previous modes.

For a given computation, we will run it to produce a tape and count𝑚 of derivatives created, and

then execute the recorded accumulations. To do so, we use a mutable array of size𝑚 initialized to 0
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in which to accumulate. We then set the final derivative to 1 as in reverse mode and iterate over

the deferred accumulations, performing them.

84 (* grad f x = 𝜕f(𝑧)
𝜕𝑧

(x) *)

85 let grad (f : T.t npaired -> T.t npaired) (x : T.t) =

86 let (m, (tape , _)) = (* Get number of derivatives and deferred operations *)

87 match_with (fun () -> (* Fresh name handler by incrementing from 0 *)

88 match_with f {v = x; dv = Some (Fresh.fresh ())} (reverse ())

89 ) () (increment_name 0)

90 in

91 (* Initialize array of derivatives to 0 for each *)

92 let ds = init (m : int) (fun _ -> T.c 0.0) in

93 ds.(m - 1) <- T.c 1.0; (* Set derivative of 𝑓 (𝑥 ) to 1 *)

94 (* Iterate through the tape with index and perform deferred operations *)

95 List.iteri (fun (k : int) (p : T.t defer) -> let open T in

96 match p with (* Account for the effect of the k-th derivative *)

97 | Single (nu, vu) -> (* Do 𝛿𝑢 += 𝑣𝑢 · 𝛿𝑘 *)

98 let dk = ds.(m - (k + 1)) in (* Tape is in reverse , `ds` is not *)

99 let du = ds.(nu.get_value) in

100 ds.(nu.get_value) <- (du +. (vu *. dk))

101 | Double (nl, nr, vl, vr) -> (* Do 𝛿𝑙 += 𝑣𝑙 · 𝛿𝑘 and 𝛿𝑟 += 𝑣𝑟 · 𝛿𝑘 *)

102 let dk = ds.(m - (k + 1)) in (* Tape is in reverse , `ds` is not *)

103 let dl = ds.(nl.get_value) in

104 ds.(nl.get_value) <- (dl +. (vl *. dk));

105 let dr = ds.(nr.get_value) in

106 ds.(nr.get_value) <- (dr +. (vr *. dk))

107 ) (tape : T.t defer list);

108 ds.(0) (* Derivative of 𝑥 , was the first `fresh ` *)

109 end

We execute the given function on line 88 using our defined handlers, producing the count𝑚 and

tape. Line 92 initializes the mutable array of derivatives to 0, directly followed by the setting of

the output derivative to 1. Next, we iterate over the tape on line 95, using the saved names and

values to accumulate into the array of derivatives. Finally, on line 108 we return the derivative of

the input variable.

We can use the Reverse_tape functor just as before. One useful aspect of taped reverse mode is

that it makes clear the dependence of memory allocation with respect to the number of smooth

operations. Namely, for 𝑛 handled operations we must allocate 𝑂 (𝑛) memory for the derivatives,

both via the tape and via derivative array. Thus, one is limited by the available memory of the

system on which the computation is being run. A solution to this issue is to not create the entire

tape simultaneously, and to instead create portions of it. To do so, portions of the computation

must be executed multiple times. The resulting algorithm, called checkpointed reverse mode, lowers
the maximum memory needed at the cost of increased computation.

3.6 Checkpointed Reverse Mode
Wewill focus on user specified checkpointing, i.e. the user must choose what portion of the program

should be recomputed in order to save memory. For an in-depth explanation, we recommend

[Hascoët and Araya-Polo 2006]. Checkpointing without user annotation is possible, see [Jeffrey

Mark Siskind and Barak A. Pearlmutter 2018], and we leave it as future work. Furthermore, we

will implement a checkpointed reverse mode with an implicit reverse pass as in section 3.4, as we

believe is it more succinct and clear.
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Our implementation begins with the definition of a new pair type.

1 open Effect.Deep (* Access effect and (deep) handler interface *)

2 open Effect (* Ditto , contains `perform ` *)

3 open Smooth (* Smooth function effect and helper functions *)

4

5 type 't rpaired = {v : 't; dv : 't ref} (* Value with ref. of derivative *)

In order to make clear when memory is being allocated, the rpaired type stores the mutable

derivative as a ref. Next, we define a new checkpoint effect and helper function.

7 module type CHECKPOINT = sig (* Module type for checkpoint effect *)

8 type t

9 type _ Effect.t += Checkpoint : (unit -> t rpaired) -> t rpaired Effect.t

10 val checkpoint : (unit -> t rpaired) -> t rpaired

11 end

12

13 module Checkpoint (T : sig type t end) : CHECKPOINT with type t = T.t = struct

14 type t = T.t

15 type _ Effect.t += Checkpoint : (unit -> t rpaired) -> t rpaired Effect.t

16 let checkpoint p = perform (Checkpoint p)

17 end

Note that the argument to checkpoint is a computation. The intended semantics is that checkpoint
p produces the same result as p (), so that the use of checkpoint only changes behavior related

to the reverse pass.

We now define checkpointed reverse mode, which will consist of two handlers, one which does

not generate a reverse pass and one which does. The first handler is essentially the evaluate handler

of section 3.2.

19 (* Perform checkpointed reverse mode w.r.t. T *)

20 module Reverse_checkpoint (T : SMOOTH) = struct

21 include Smooth (struct type t = T.t rpaired end)

22 include Checkpoint (struct type t = T.t end)

23

24 let rec evaluate (s : t ref) = { (* Handle checkpoint without reverse pass *)

25 retc = (fun x -> x); (* Do nothing with returned value *)

26 exnc = raise; (* Re-raise encountered exceptions *)

27 effc = (fun (type a) (eff : a Effect.t) ->

28 match eff with

29 | Ap0 n -> Some (fun (k : (a, _) continuation) -> let open T in

30 continue k {v = ap0 n; dv = s}

31 )

32 | Ap1 (u, x) -> Some (fun k -> let open T in

33 continue k {v = ap1 u x.v; dv = s}

34 )

35 | Ap2 (b, x, y) -> Some (fun k -> let open T in

36 continue k {v = ap2 b x.v y.v; dv = s}

37 )

38 | Checkpoint p -> Some (fun k ->

39 (* Recursively run other checkpoints without reverse pass *)

40 let {v = res; dv = _} = match_with p () (evaluate s) in

41 continue k {v = res; dv = s}

42 )
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43 | _ -> None

44 )

45 }

Unlike previous handlers, evaluate recursively calls itself (line 40) due to the need of handling

smooth operations and nested checkpoint effects in checkpointed code. Deep handlers only re-

cursively handle effects encountered through resuming the caught continuation k. Other kinds of
effect and handler systems, such as the scoped effects of [Wu et al. 2014; Yang et al. 2022] or the

higher-order effects of [B. v. d. Berg and Schrijvers 2023], may be able to express the requirement

of evaluate handling the effects of checkpoint’s argument. We also pass in a reference s to act

as a dummy value. A more verbose alternative would be to use an option type in rpaired.
We now define the checkpointed reverse mode handler, which is also recursive. The handling

of smooth functions is the same as in reverse mode except for being adapted for references. The

handling of the checkpoint effect has the same general structure as smooth functions: calculate the

value of the function and allocate a derivative, run the rest of the program, and finally accumulate

into the derivatives of the inputs.

47 let rec reverse () = { (* Handler for checkpointed reverse mode *)

48 retc = (fun x -> x); (* Do nothing with returned value *)

49 exnc = raise; (* Re-raise encountered exceptions *)

50 effc = (fun (type a) (eff : a Effect.t) ->

51 match eff with

52 | Ap0 n -> Some (fun (k : (a, _) continuation) -> let open T in

53 continue k {v = ap0 n; dv = ref (c 0.0)}

54 )

55 | Ap1 (u, x) -> Some (fun k -> let open T in

56 let r = {v = ap1 u x.v; dv = ref (c 0.0)} in

57 continue k r;

58 x.dv := !(x.dv) +. (der1 u x.v *. !(r.dv))

59 )

60 | Ap2 (b, x, y) -> Some (fun k -> let open T in

61 let r = {v = ap2 b x.v y.v; dv = ref (c 0.0)} in

62 continue k r;

63 x.dv := !(x.dv) +. (der2 b L x.v y.v *. !(r.dv));

64 y.dv := !(y.dv) +. (der2 b R x.v y.v *. !(r.dv))

65 )

66 | Checkpoint p -> Some (fun k -> let open T in

67 let s = ref (c 0.0) in

68 (* Get result of checkpoint without creating reverse pass *)

69 let res = match_with (p : unit -> t rpaired) () (evaluate s) in

70 let r = {v = res.v; dv = ref (c 0.0)} in

71 continue k r; (* Rest of the program *)

72 match_with (fun () -> (* Create and run reverse pass for checkoint *)

73 let {v = _; dv = dres} = p () in

74 dres := !(r.dv) (* Propagate result of `checkpoint ` reverse pass *)

75 ) () (reverse ())

76 )

77 | _ -> None

78 )

79 }

Let us focus on the Checkpoint case. Line 69 calculates the value result of executing p by using the

evaluate handler. The subsequent line then allocates a derivative for said result. We then continue
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the rest of the program, which as we have seen generates a portion of the reverse pass. After the

remainder of the program has been handled, we call p again on line 73 to generate the reverse pass

through a recursive use of reverse. Importantly, on line 74, we propagate the accumulations of

this reverse pass by setting the derivative created for p’s reverse pass to the previously allocated

derivative.

Finally, the helper function is analogous to the standard reverse mode function.

81 (* grad f x = 𝜕f(𝑧)
𝜕𝑧

(x) *)

82 let grad (f : t rpaired -> t rpaired) (x : t) =

83 let r = {v = x; dv = ref (T.c 0.0)} in

84 match_with (fun x -> (f x).dv := T.c 1.0) r (reverse ());

85 !(r.dv)

86 end

The following is an example of how to use checkpointed reverse mode. We have written a program

which should be equivalent to 𝑥2 + 3𝑥 + 2, which has derivative 2𝑥 + 3.

1 let _ =

2 let module E = Evaluate in

3 let module R = Reverse_checkpoint(E) in

4 let res = match_with (R.grad (fun x -> let open R in

5 let y = c 2.0 in (* 𝑦 = 2 *)

6 let z = checkpoint (fun () -> x +. y) in (* 𝑧 = 𝑥 + 2 *)

7 let a = checkpoint (fun () ->

8 let w = checkpoint (fun () -> x *. z) in (* 𝑤 = 𝑥2 + 2𝑥 *)

9 w +. y (* 𝑎 = 𝑥2 + 2𝑥 + 2 *)

10 ) in

11 a +. x (* 𝑥2 + 3𝑥 + 2 *)

12 )) 5.0 E.evaluate in

13 Printf.printf "%f\n" res (* Prints "13.000000" = 2(5) + 3 =
𝜕 (𝑥2+3𝑥+2)

𝜕𝑥
(5) *)

Values are passed into checkpointed code via closures. Furthermore, we see that the algorithm

supports nested checkpointing. We also note that like previous modes, checkpointed reverse mode

can be combined with other modes.

4 BENCHMARKS
All benchmarks have been run on a Dell Precision T3600 with a quad core (3.60 GHz boost) Intel

Xeon E5-1620, 4 × 8GB = 32GB 1600 MHz DDR4, and 256 GB SATA 6 Gb/s SSD. The operating

system used is headless Debian 12 (bookworm) with Linux kernel release 6.1.0-18-amd64.

4.1 Asymptotic Benchmarks
An important aspect of AD is the asymptotic behavior. [Griewank and A. Walther 2008, Sec. 4.4]

show that for a composite measure of “work”, both forward and reverse mode only need perform

bounded constant multiple more work than the original program. Their measure of work accounts

for four categories: memory fetches and stores, additions and subtractions, multiplications, and

non-linear operations. Paired with reasonable assumptions, they then prove that forward mode

applied to a program should be between 2 to 2.5 times slower than the original program, and reverse

mode should be between 3 to 4 times slower. The behavior of checkpointed reverse mode is more

complicated due to its ability to trade space for time. We will thus examine forward mode, reverse

mode, and taped reverse mode for correct performance.

Thus, we would like to show that our implementations differentiate with only a constant multiple

slowdown, and that this holds across different problem sizes. To do so, we create a simple program
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with an input 𝑛 such that the number of smooth operations invoked is directly proportional to 𝑛.

Thus, graphing time 𝑡 against 𝑛 should produce a line, and if another program takes time 𝑐 · 𝑡 , then
it is also a line when graphed against 𝑛. Our simple program will approximate the the Taylor series

of
1

𝑥
around 1, i.e. it will approximate the right-hand side of

1

𝑥
=

∞∑︁
𝑛=0

(−1)𝑛 (𝑥 − 1)𝑛

which converges when |𝑥 − 1| < 1. Let 𝑎𝑛 denote the 𝑛
th
term of the above series. Then we have

the recurrence

𝑎0 = 1, 𝑎𝑛 = −(𝑥 − 1) · 𝑎𝑛−1
and so we can iteratively generate 𝑎𝑛 as shown below:

1 open Smooth

2

3 module Taylor_Recip_Benchmark (T : SMOOTH) = struct

4 let approx_recip iters x = let open T in

5 let prev = ref (c 1.0) in (* 𝑎0 *)

6 let acc = ref (c 1.0) in (*
∑

0

𝑛=0 𝑎𝑛 *)

7 for _i = 1 to iters do

8 prev := !prev *. (~. (x -. (c 1.0))); (* 𝑎_i = −(x − 1) · 𝑎_𝑖−1 *)

9 acc := !prev +. !acc (*
∑_i

𝑛=0
𝑎𝑛 = 𝑎_i +

∑_i−1
𝑛=0

𝑎𝑛 *)

10 done;

11 !acc (*
∑iters

𝑛=0 𝑎𝑛 *)

12 end

Each iteration of the loop executes five smooth operations. Therefore, the number of operations

and thus the time to execute should be directly proportional to iters, and thus each algorithm

applied to apporx_recip should be directly proportional if our implementations have the correct

behavior. We then create an executable which takes iters as a command line argument, e.g.

1 let _ =

2 (* Increase the minor heap size to 500MiB to stop quadratic behaviour in

3 reverse mode due to deep callstack. 1MiB = 1048576. *)

4 Gc.set { (Gc.get ()) with Gc.minor_heap_size = (500 * 1048576) };

5 let iters = int_of_string Sys.argv .(1) in

6 let module E = Evaluate in

7 let module R = Reverse(E) in

8 let module T = Taylor_Recip_Benchmark(R) in

9 let res = match_with (R.grad (T.approx_recip iters)) 0.5 E.evaluate in

10 Printf.printf "%f\n" res

The above example is straightforward except for the change in the garbage collector (GC) minor

heap size parameter. Reverse mode creates a deep call stack which is long-lived (the length of the

entire program), causing stack scans by the GC to add a linear overhead. By increasing the minor

heap size, this issue is alleviated. The needed minor heap size increases proportional to iters, and
we have chosen a suitable value for our tested range. It is also possible to change the behavior of

OCaml 5.0’s GC, but that is out of our scope here
3
.

To analyze the runtime of each of the created programs, we execute the program with values of

iters from 30, 000 to 600, 000 in increments of 30, 000. For each value of iters, we first run the

program ten times as a warmup, and then at least a further ten times to collect timing data. We then

3
Thanks to REDACTED FOR PEER REVIEW who diagnosed the issue and suggested the used solution.
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plot the mean of the collected times with symmetric error bars showing the standard deviation.

Furthermore, to aid comparison across modes, we graph all four modes together using logarithmic

scales on both axes. The results of this process are collected in fig. 1.

(a) Evaluation mode (b) Forward mode

(c) Reverse mode (d) Taped reverse mode
(e) Log-log comparison

of all modes

Fig. 1. Benchmark results

Figures 1a to 1d show the results of each individual mode. As desired, fig. 1a shows the execution

time of evaluation mode is directly proportional to iters. Furthermore, figs. 1b to 1d show that

the other have execution time directly proportional to iters, meaning that each mode is only a

constant time slower than evaluation across all values of iters. Finally, fig. 1e shows that forward
and both reverse modes are within one order of magnitude slower than evaluation mode, forward

mode is approximately 4.6× slower than evaluation and each reverse mode is approximately 8.3×
slower. We have not reached the theoretical optimal bounds derived by [Griewank and A. Walther

2008] of 2.5× and 4×, but we are not far off. Therefore, we claim that our AD modes are performant

enough to be practical. We will now strengthen this claim with a real world example.

4.2 Real World Benchmarks
We claim that our implementation of AD via effects and handlers is performant with respect to

comparable implementations. By comparable, we mean CPU based, as we do not use GPU based

computation, and dynamic, as static approaches are almost always faster through code generation

and optimization. The dynamic approach is often referred to as eager mode, for example by PyTorch

and TensorFlow. To substantiate our claim, we will use the benchmark suite of [Šrajer et al. 2018b]
4
.

The suite of Šrajer et al. is reproducible, extensible, realistic, and expansive. It is reproducible

through the use of containerization, ensuring that the same version of each tool is used across

runs and compilations. Extensibility is achieved through a documented test harness and modular

design. The four computations which they benchmark are real world functions which are optimized

against in machine learning and computer vision. Additionally, the current iteration of their system

supports thirteen different implementations across five languages, including a baseline of finite

differences
5
and manually implemented derivatives. Finally, the computed derivatives are checked

for correctness against a known correct implementation.

4
A longer preprint is available [Šrajer et al. 2018a] and the base suite is available at https://github.com/microsoft/ADBench.

5
Finite differences approximate the derivative via, for example,

𝜕𝑓 (𝑥 )/𝜕𝑥 (𝑦) � 𝑓 (𝑦 + 𝜖 ) − 𝑓 (𝑦)/𝜖, which holds for small 𝜖 .
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The full methodology can be found in their paper and the repository
6
, we will highlight the

important aspects here. For each implementation and set of parameters, essentially the following is

carried out:

• Read the input data and convert it into a consumable format.

• Run any needed preparation code which is not AD.

• For both computation of the objective function and its gradient:

– Find the number of times 𝑟 needed to run to reach a prescribed minium time.

– Run 𝑛 lots of 𝑟 computations, find the average time for each lot.

– Pick the minium average time of from the 𝑛 lots to alleviate noise.

• Save the times recorded and the numerical results to check correctness.

We have chosen one of their four computations to implement, namely the objective function used

for the fitting of Gaussian mixture models. Specifically, let𝑚, 𝑁, 𝐾, 𝐷 ∈ N and let 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤
𝑘 ≤ 𝐾 . We use | | · | | for Euclidean norm, and use an unspecified function𝑄 : R𝐷 ×R𝐷 (𝐷 − 1)/2 → R𝐷×𝐷

which creates a 𝐷 × 𝐷 lower triangular matrix. Then for vectors 𝒙𝑖 ∈ R𝐷 , 𝒒𝑘 ∈ R𝐷 , 𝒍𝑘 ∈ R𝐷 (𝐷 − 1)/2
,

𝝁𝑘 ∈ R𝐷 , and 𝜶 ∈ R𝐾 , we define

𝐿(𝜶 ,M,Q, L) :=
𝑁∑︁
𝑖=1

logsumexp

([
𝛼𝑘 + sum(𝒒𝑘 ) −

1

2

| |𝑄 (𝒒𝑘 , 𝒍𝑘 ) (𝒙𝑖 − 𝝁𝑘 ) | |2
]𝐾
𝑘=1

)
− 𝑁 logsumexp

(
[𝛼𝑘 ]𝐾𝑘=1

)
(1)

+ 1

2

𝐾∑︁
𝑘=1

(
| | exp (𝒒𝑘 ) | |2 + ||𝒍𝑘 | |2

)
−𝑚 sum(𝒒𝑘 )

where we have matrices M := [𝝁𝑘 ]𝐾𝑘=1, Q := [𝒒𝑘 ]𝐾𝑘=1, and L := [𝒍𝑘 ]𝐾𝑘=1. The derivation of this

objective function and the definition of 𝑄 can be found in [Šrajer et al. 2018b]. The variables 𝜶 , M,

Q, and L are the independent variables which we must find the derivatives of, where the 𝒙𝑖 ’s have
a fixed value. The dimensions of the independent variables will change depending on 𝑁 , 𝐾 , and 𝐷

and the total number of independent variables will be the increasing parameter which we measure

time against.

We implement the above function using the Owl scientific computing library [L. Wang et al.

2022]
7
. Doing so gives us access to primitive operations such as summation and transposition on

tensors (𝑛-dimensional arrays). Thus, our family of smooth functions can now include tensor-valued

operations. Owl itself can perform AD, but we do not use this feature. The new version of Smooth
can be found in appendix B.1. Consequently, the number of effectful operations greatly decreases,

e.g. 999 uses of binary addition for a 1000 element vector versus 1 summation operation, which

reduces the overhead of effect handling. Besides the change to operations involving tensors, the

structure of reverse mode is the same, which can be seen in appendix B.2.

The results of our implementation along with the other systems is summarized in fig. 2 (and

fig. 3 in appendix A) where the 𝑥-axis is the number of independent variables and the 𝑦-axis is

the amount of time to compute the Jacobian, with each axis logarithmic scale. The input data for

fig. 2 always has 𝑁 = 1, 000, while fig. 3 always has 𝑁 = 10, 000, and we note that this does not

effect the number of independent variables. In both figures, our implementation is more performant

in the long run than: finite differences (C++), Autograd (Python), Zygote (Julia), and pure Julia

(Julia). For 𝑁 = 1, 000 we are competitive with eager TensorFlow 2.0 (Python), although we are

not for 𝑁 = 10, 000. Finally, we are competitive with DiffSharp (F#) in both instances. Of the

6
https://github.com/microsoft/ADBench/blob/master/docs/Methodology.md

7
https://ocaml.xyz/
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Fig. 2. GMM results, N = 1,000

previous systems, the only define-by-run system we do not out perform is eager Tensorflow.

Furthermore, the remaining seven implementations which outperform us are either handcrafted,

source transformations, or define-then-run systems. Therefore, we substantiate our claim that we

are a competitive define-by-run system.

5 RELATEDWORK
AD with Effects and Handlers. There is previous work in implementing AD with effects and handlers

as well as proving said implementations correct. The first implementation we are aware of is by

[K. C. Sivaramakrishnan 2018], and is of reverse mode AD, which itself was adapted from [F. Wang

and Rompf 2018] which used delimited continuations. F. Wang, Zheng, et al. also extended their

delimited continuation AD approach in [F. Wang, Zheng, et al. 2019]. Finally, [de Vilhena and Pottier

2023] prove the correctness of an implementation analogous to that of [K. C. Sivaramakrishnan

2018]. They use their separation logic for effects and handlers to prove reverse mode correct with

respect to an operational semantics. Another combination of AD with effects and handlers is [Tan

et al. 2023], which implements effect handlers for the JAX language [Bradbury et al. 2024]. JAX

supports AD and Tan et al. use AD to implement handlers for choice-based learning.

AD and the Programming Language Community. As seen in section 2.2, there is no shortage of AD

systems stretching back decades. What is more recent is the interest of the programming language

community in AD, catalyzed by [Barak A. Pearlmutter and Jeffrey Mark Siskind 2008] who showed

how to implement reverse mode in a functional framework. Elliott [2018] provided a correct-by-

construction, categorical combinator based approach to various modes. Another combinator-like

approach is described in the string diagram formalism of [Alvarez-Picallo et al. 2021]. Other works
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have shown how to derive AD modes based on a sequence of program transformations [Krawiec

et al. 2022; Radul et al. 2022; T. J. Smeding and M. I. L. Vákár 2023] and algebraic reasoning [B. v. d.

Berg et al. 2024]. Much work has been directed towards ensuring efficiency of reverse mode in

general purpose languages [Brunel et al. 2019; Krawiec et al. 2022; Radul et al. 2022; T. J. Smeding

and M. I. L. Vákár 2024, 2023] as well as in array focused languages [Shaikhha, Fitzgibbon, et al.

2019; Shaikhha, Huot, et al. 2022]. Correctness has also been a focus, for example the sound and

complete semantics of [Abadi and G. D. Plotkin 2020] of a first-order language. The inclusion of

higher-order functions has been achieved in a number of works [Alvarez-Picallo et al. 2021; Huot

et al. 2020, 2022; Sherman et al. 2021; M. Vákár and T. Smeding 2022]. Finally, attention has also

been paid to non-differentiable functions. Mazza and Pagani [2021] show that PCF, with allowed

primitives, gives the correct derivative with probability 1, and Sherman et al. [2021] describe a

language for Lipschitz but nondifferentiable functions with a computable semantics.

6 CONCLUSION AND FUTUREWORK
We have shown how to implement four different AD modes in OCaml 5.0 using effects and handlers,

namely forward mode, reverse mode, taped reverse mode, and checkpointed reverse mode. Reverse

mode took advantage of the complex control flow that effects and handlers afford to dynamically

build a reverse pass. Checkpointed reverse mode made use of the ability of handlers to provide

different interpretations of the same program by running checkpointed code in two different

manners. Additionally, by structuring our modes as OCaml functors, they composed together to

form new modes and compute higher-order derivatives due to the compositionality of handlers.

Overall, we provided a framework for modularly defining AD algorithms using effects and handlers.

Importantly, we also analyzed the execution time characteristics of forward mode, reverse mode,

and taped reverse mode. The linchpin result of AD is that there is only a constant multiple overheard

for computing the derivative compared to the original program. By creating a sample program

which performed a variable amount of work, we showed that our implementations satisfied this

requirement across problem sizes. Finally, we provided a real world test of absolute performance

of reverse mode, and showed that our implementation was competitive with other define-by-run

systems.

Future work. We see various avenues for future work:

• The checkpointed reverse mode we implemented is user-driven; only the code explicitly

annotated by the user is checkpointed. [Jeffrey Mark Siskind and Barak A. Pearlmutter 2018]

describe a checkpointed reverse mode which does not require user annotation. Their divide-

and-conquer algorithm requires “splitting a program in half” with respect to execution cost,

and then recursing on each half. OCaml 5.0 handlers can only resume a continuation once
8
,

but so-called multi-shot handlers (which can resume multiple times) exist in other languages.

Thus, their algorithm is a perfect fit for multi-shot handlers which can run the program

once to split it in half with a measurement handler, and then run it again to recurse using a

different handler.

• Another interesting algorithm we believe is well suited to effects and handlers is the ADEV

algorithm of [Lew et al. 2023], which enables AD to differentiate through the expectation of

probabilistic processes. In particular, the same syntactic sampling operation can be interpreted

in different ways to achieve different statistical guarantees, a great match for effects and

handlers.

8
The multicont library (https://github.com/dhil/ocaml-multicont) of Daniel Hillerström allows multi-shot handlers in

OCaml 5.0, but with various hazards.
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• Our implementations provide a suitable base for studying the interaction of AD and other

effects. For example, what interactions should there be between checkpointed reverse mode

and non-determinism, or probabilistic sampling?

• Though [de Vilhena and Pottier 2023] have proved handler based reverse mode correct, we

believe there is more room for semantic proofs of handler based AD algorithms, which is

ongoing work.
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A GMM GRAPH FOR N = 10,000

Fig. 3. GMM results, N = 10,000
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B ADDITIONAL CODE FOR TENSOR VALUED OPERATIONS
B.1 Smooth Effect with Tensors

1 open Effect

2

3 type u_to_s = Const of float

4 type s_to_s = Negate | Log

5 type s's_to_s = Add | Subtract | Multiply | Divide

6

7 type u_to_t = Zeros of int array | Create of int array * float

8 type t_to_t

9 = Squeeze of int array option

10 | Reshape of int array

11 | GetSlice of int list list

12 | SliceLeft of int array

13 | Transpose of int array option

14 | Exp

15 | Negate

16 | PowerConst of float

17 | SumReduce of int array option

18 | LogSumExp of int option * bool option

19 | Softmax of int option

20 type t't_to_t

21 = Add

22 | Subtract

23 | Multiply

24 | Divide

25 | Einsum_ijk_mik_to_mij

26 | Einsum_ijk_mij_to_mik

27 | Einsum_mij_mik_to_ijk

28 | SetSlice of int list list

29

30 type t_to_s = Get of int array | Sum

31 type s't_to_t = ScalarMultiply | SubtractScalar

32 type ta_to_t = Concatenate of int option | Stack of int option

33 type t_to_ta = Split of int option * int array

34

35 type arg = L | R

36

37 module type SMOOTH = sig

38 type scalar

39 type tensor

40 type _ Effect.t +=

41 Ap_u_to_s : u_to_s -> scalar Effect.t

42 | Ap_s_to_s : s_to_s * scalar -> scalar Effect.t

43 | Ap_s 's_to_s : s's_to_s * scalar * scalar -> scalar Effect.t

44 | Ap_u_to_t : u_to_t -> tensor Effect.t

45 | Ap_t_to_t : t_to_t * tensor -> tensor Effect.t

46 | Ap_t 't_to_t : t't_to_t * tensor * tensor -> tensor Effect.t

47 | Ap_t_to_s : t_to_s * tensor -> scalar Effect.t

48 | Ap_s 't_to_t : s't_to_t * scalar * tensor -> tensor Effect.t

49 | Ap_ta_to_t : ta_to_t * tensor array -> tensor Effect.t
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50 | Ap_t_to_ta : t_to_ta * tensor -> tensor array Effect.t

51

52 val c : float -> scalar

53 val ( ~. ) : scalar -> scalar

54 val log : scalar -> scalar

55 val ( +. ) : scalar -> scalar -> scalar

56 val ( -. ) : scalar -> scalar -> scalar

57 val ( *. ) : scalar -> scalar -> scalar

58 val ( /. ) : scalar -> scalar -> scalar

59

60 (* Non -differentiable operations *)

61 val shape : tensor -> int array

62 val add_ : tensor -> tensor -> unit

63

64 (* Creating constant tensors *)

65 val zeros : int array -> tensor

66 val create : int array -> float -> tensor

67

68 (* Combining tensors *)

69 val concatenate : ?axis:int -> tensor array -> tensor

70 val stack : ?axis:int -> tensor array -> tensor

71

72 (* Splitting tensors *)

73 val split : ?axis:int -> int array -> tensor -> tensor array

74

75 (* Changing tensor shape *)

76 val transpose : ?axis:int array -> tensor -> tensor

77 val reshape : tensor -> int array -> tensor

78

79 (* Shrinking and slicing tensors *)

80 val squeeze : ?axis:int array -> tensor -> tensor

81 val get_slice : int list list -> tensor -> tensor

82 val slice_left : tensor -> int array -> tensor

83 val get : tensor -> int array -> scalar

84 val set_slice : int list list -> tensor -> tensor -> tensor

85

86 (* Einsum operations *)

87 val einsum_ijk_mik_to_mij : tensor -> tensor -> tensor

88 val einsum_ijk_mij_to_mik : tensor -> tensor -> tensor

89 val einsum_mij_mik_to_ijk : tensor -> tensor -> tensor

90

91 (* Pointwise tensor operations *)

92 val exp : tensor -> tensor

93 val pow_const : tensor -> float -> tensor

94 val ( ~- ) : tensor -> tensor

95 val ( + ) : tensor -> tensor -> tensor

96 val ( - ) : tensor -> tensor -> tensor

97 val ( * ) : tensor -> tensor -> tensor

98 val ( / ) : tensor -> tensor -> tensor

99

100 (* Reduction operations *)

101 val sum : tensor -> scalar
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102 val sum_reduce : ?axis:int array -> tensor -> tensor

103 val log_sum_exp : ?axis:int -> ?keep_dims:bool -> tensor -> tensor

104 val softmax : ?axis:int -> tensor -> tensor

105

106 (* Scalar -tensor operations *)

107 val scalar_mul : scalar -> tensor -> tensor

108 val sub_scalar : tensor -> scalar -> tensor

109

110 val op_u_to_s: u_to_s -> scalar

111 val op_s_to_s: s_to_s -> scalar -> scalar

112 val op_s 's_to_s : s's_to_s -> scalar -> scalar -> scalar

113

114 val op_u_to_t : u_to_t -> tensor

115 val op_t_to_t : t_to_t -> tensor -> tensor

116 val op_t 't_to_t : t't_to_t -> tensor -> tensor -> tensor

117

118 val op_t_to_s : t_to_s -> tensor -> scalar

119 val op_s 't_to_t : s't_to_t -> scalar -> tensor -> tensor

120 val op_ta_to_t : ta_to_t -> tensor array -> tensor

121 val op_t_to_ta : t_to_ta -> tensor -> tensor array

122

123 val der_s_to_s : s_to_s -> scalar -> (scalar -> scalar)

124 val der_s 's_to_s : s's_to_s -> scalar -> scalar -> (scalar -> scalar * scalar)

125

126 val der_t_to_t : t_to_t -> tensor -> (tensor -> tensor)

127 val der_t 't_to_t : t't_to_t -> tensor -> tensor -> (tensor -> tensor * tensor)

128

129 val der_t_to_s : t_to_s -> tensor -> (scalar -> tensor)

130 val der_s 't_to_t : s't_to_t -> scalar -> tensor -> (tensor -> scalar * tensor)

131 val der_ta_to_t : ta_to_t -> tensor array -> (tensor -> tensor array)

132 val der_t_to_ta : t_to_ta -> tensor -> (tensor array -> tensor)

133 end

134

135 module type SMOOTH_NON_DIFF = sig

136 type scalar

137 type tensor

138

139 val shape : tensor -> int array

140 val add_ : tensor -> tensor -> unit

141 end

142

143 module Smooth (T : SMOOTH_NON_DIFF) : SMOOTH

144 with type scalar = T.scalar

145 with type tensor = T.tensor

146 = struct

147 include T

148

149 type scalar = T.scalar

150 type tensor = T.tensor

151 type _ Effect.t +=

152 Ap_u_to_s : u_to_s -> scalar Effect.t

153 | Ap_s_to_s : s_to_s * scalar -> scalar Effect.t
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154 | Ap_s 's_to_s : s's_to_s * scalar * scalar -> scalar Effect.t

155 | Ap_u_to_t : u_to_t -> tensor Effect.t

156 | Ap_t_to_t : t_to_t * tensor -> tensor Effect.t

157 | Ap_t 't_to_t : t't_to_t * tensor * tensor -> tensor Effect.t

158 | Ap_t_to_s : t_to_s * tensor -> scalar Effect.t

159 | Ap_s 't_to_t : s't_to_t * scalar * tensor -> tensor Effect.t

160 | Ap_ta_to_t : ta_to_t * tensor array -> tensor Effect.t

161 | Ap_t_to_ta : t_to_ta * tensor -> tensor array Effect.t

162

163 let c s = perform (Ap_u_to_s (Const s))

164 let log s = perform (Ap_s_to_s (Log , s))

165 let ( ~. ) s = perform (Ap_s_to_s (Negate , s))

166 let ( +. ) s1 s2 = perform (Ap_s 's_to_s (Add , s1, s2))

167 let ( -. ) s1 s2 = perform (Ap_s 's_to_s (Subtract , s1, s2))

168 let ( *. ) s1 s2 = perform (Ap_s 's_to_s (Multiply , s1, s2))

169 let ( /. ) s1 s2 = perform (Ap_s 's_to_s (Divide , s1, s2))

170

171 let zeros ia = perform (Ap_u_to_t (Zeros ia))

172 let create ia s = perform (Ap_u_to_t (Create (ia, s)))

173 let concatenate ?axis ta = perform (Ap_ta_to_t (Concatenate axis , ta))

174 let stack ?axis ta = perform (Ap_ta_to_t (Stack axis , ta))

175 let split ?axis ia t = perform (Ap_t_to_ta (Split (axis , ia), t))

176 let transpose ?axis t = perform (Ap_t_to_t (Transpose axis , t))

177 let reshape t d = perform (Ap_t_to_t (Reshape d, t))

178 let squeeze ?axis t = perform (Ap_t_to_t (Squeeze axis , t))

179 let get_slice ill t = perform (Ap_t_to_t (GetSlice ill , t))

180 let slice_left t ia = perform (Ap_t_to_t (SliceLeft ia, t))

181 let get t ia = perform (Ap_t_to_s (Get ia, t))

182 let set_slice ill t1 t2 = perform (Ap_t 't_to_t (SetSlice ill , t1, t2))

183 let einsum_ijk_mik_to_mij a x =

184 perform (Ap_t 't_to_t (Einsum_ijk_mik_to_mij , a, x))

185 let einsum_ijk_mij_to_mik a y =

186 perform (Ap_t 't_to_t (Einsum_ijk_mij_to_mik , a, y))

187 let einsum_mij_mik_to_ijk y x =

188 perform (Ap_t 't_to_t (Einsum_mij_mik_to_ijk , y, x))

189 let exp t = perform (Ap_t_to_t (Exp , t))

190 let ( ~- ) t = perform (Ap_t_to_t (Negate , t))

191 let pow_const t f = perform (Ap_t_to_t (PowerConst f,t))

192 let ( + ) t1 t2 = perform (Ap_t 't_to_t (Add , t1, t2))

193 let ( - ) t1 t2 = perform (Ap_t 't_to_t (Subtract , t1, t2))

194 let ( * ) t1 t2 = perform (Ap_t 't_to_t (Multiply , t1, t2))

195 let ( / ) t1 t2 = perform (Ap_t 't_to_t (Divide , t1, t2))

196 let sum t = perform (Ap_t_to_s (Sum , t))

197 let sum_reduce ?axis t = perform (Ap_t_to_t (SumReduce axis , t))

198 let log_sum_exp ?axis ?keep_dims t =

199 perform (Ap_t_to_t (LogSumExp (axis , keep_dims), t))

200 let softmax ?axis t = perform (Ap_t_to_t (Softmax axis , t))

201 let scalar_mul s t = perform (Ap_s 't_to_t (ScalarMultiply , s, t))

202 let sub_scalar t s = perform (Ap_s 't_to_t (SubtractScalar , s, t))

203

204 (* Simple expand operation. ia contains which axes to expand. *)

205 let _expand t shp ia =
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206 let res = ref t in

207 for j = 0 to Stdlib .(Array.length ia - 1) do

208 res := concatenate ~axis:(ia.(j)) (Array.make shp.(ia.(j)) !res)

209 done;

210 !res

211

212 (* Inverse of a permutation *)

213 let _inv_perm p =

214 let l = Array.length p in

215 let q = Array.make l 0 in

216 for i = 0 to Stdlib .(l - 1) do

217 q.(p.(i)) <- i;

218 done;

219 q

220

221 let op_u_to_s (o : u_to_s) = match o with

222 | Const x -> c x

223 let op_s_to_s (o : s_to_s) s = match o with

224 | Negate -> ~. s

225 | Log -> log s

226 let op_s 's_to_s (o : s's_to_s) s1 s2 = match o with

227 | Add -> s1 +. s2

228 | Subtract -> s1 -. s2

229 | Multiply -> s1 *. s2

230 | Divide -> s1 /. s2

231

232 let op_u_to_t (o : u_to_t) = match o with

233 | Zeros ia -> zeros ia

234 | Create (ia , f) -> create ia f

235 let op_t_to_t (o : t_to_t) t = match o with

236 | Squeeze iao -> squeeze ?axis:iao t

237 | Reshape d -> reshape t d

238 | GetSlice ill -> get_slice ill t

239 | SliceLeft ia -> slice_left t ia

240 | Transpose iao -> transpose ?axis:iao t

241 | Exp -> exp t

242 | Negate -> ~- t

243 | PowerConst f -> pow_const t f

244 | SumReduce iao -> sum_reduce ?axis:iao t

245 | LogSumExp (io, bo) -> log_sum_exp ?axis:io ?keep_dims:bo t

246 | Softmax io -> softmax ?axis:io t

247 let op_t 't_to_t (o : t't_to_t) t1 t2 = match o with

248 | Add -> t1 + t2

249 | Subtract -> t1 - t2

250 | Multiply -> t1 * t2

251 | Divide -> t1 / t2

252 | Einsum_ijk_mik_to_mij -> einsum_ijk_mik_to_mij t1 t2

253 | Einsum_ijk_mij_to_mik -> einsum_ijk_mij_to_mik t1 t2

254 | Einsum_mij_mik_to_ijk -> einsum_mij_mik_to_ijk t1 t2

255 | SetSlice ill -> set_slice ill t1 t2

256

257 let op_t_to_s (o : t_to_s) t = match o with
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258 | Get ia -> get t ia

259 | Sum -> sum t

260 let op_s 't_to_t (o : s't_to_t) s t = match o with

261 | ScalarMultiply -> scalar_mul s t

262 | SubtractScalar -> sub_scalar t s

263 let op_ta_to_t (o : ta_to_t) ta = match o with

264 | Concatenate io -> concatenate ?axis:io ta

265 | Stack io -> stack ?axis:io ta

266 let op_t_to_ta (o : t_to_ta) t = match o with

267 | Split (io , ia) -> split ?axis:io ia t

268

269 let der_s_to_s (o : s_to_s) s = match o with

270 | Negate -> fun sd -> ~. sd

271 | Log -> fun sd -> sd /. s

272 let der_s 's_to_s (o : s's_to_s) s1 s2 = match o with

273 | Add -> fun sd -> (sd, sd)

274 | Subtract -> fun sd -> (sd, ~. sd)

275 | Multiply -> fun sd -> (s2 *. sd, s1 *. sd)

276 | Divide -> fun sd -> (sd /. s2, (sd *. (~. s1)) /. (s2 *. s2))

277

278 let der_t_to_t (o : t_to_t) t = match o with

279 | Squeeze _ -> fun td -> reshape td (shape t)

280 | Reshape _ -> fun td -> reshape td (shape t)

281 | GetSlice ill -> fun td -> set_slice ill (zeros (shape t)) td

282 | SliceLeft ia -> fun td ->

283 let ill = Array.to_list (Array.map (fun i -> [i]) ia) in

284 let shp = Array.( append (make (length ia) 1) (shape td)) in

285 let tdr = reshape td shp in

286 set_slice ill (zeros (shape t)) tdr

287 | Transpose iao ->

288 let ia = match iao with

289 | None ->

290 let d = Array.length (shape t) in

291 Array.init d Stdlib .(fun i -> d - i - 1)

292 | Some ia -> ia

293 in

294 fun td -> transpose ~axis:( _inv_perm ia) td

295 | Exp -> fun td -> exp t * td

296 | Negate -> fun td -> ~- td

297 | PowerConst f -> fun td ->

298 scalar_mul (c f) (td * pow_const t Stdlib .(f -. 1.0))

299 | SumReduce iao ->

300 let ia = (match iao with

301 | None -> Array.init (Array.length (shape t)) (fun i -> i)

302 | Some ia -> ia

303 ) in

304 fun td -> _expand td (shape t) ia

305 | LogSumExp (io, bo) -> (

306 let (i, b) = match (io, bo) with

307 | (None , None) -> (0, true)

308 | (Some i, None) -> (i, true)

309 | (None , Some b) -> (0, b)
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310 | (Some i, Some b) -> (i, b)

311 in

312 if b

313 then fun td -> td * softmax ~axis:i t

314 else fun td ->

315 let shp = shape t in

316 shp.(i) <- 1;

317 (reshape td shp) * (softmax ~axis:i t)

318 )

319 | Softmax _io -> raise (Invalid_argument "Softmax not implemented")

320 let der_t 't_to_t (o : t't_to_t) t1 t2 = match o with

321 | Add -> fun td -> (td, td)

322 | Subtract -> fun td -> (td, ~- td)

323 | Multiply -> fun td -> (t2 * td, t1 * td)

324 | Divide -> fun td -> (td / t2, (td * (~- t1)) / (t2 * t2))

325 | Einsum_ijk_mik_to_mij -> fun td ->

326 (einsum_mij_mik_to_ijk td t2, einsum_ijk_mij_to_mik t1 td)

327 | Einsum_ijk_mij_to_mik -> fun td ->

328 (einsum_ijk_mik_to_mij t1 td, einsum_mij_mik_to_ijk t2 td)

329 | Einsum_mij_mik_to_ijk -> fun td ->

330 (einsum_ijk_mik_to_mij td t2, einsum_ijk_mij_to_mik td t1)

331 | SetSlice ill -> fun td ->

332 (set_slice ill td (zeros (shape t2)), get_slice ill td)

333

334 let der_t_to_s (o : t_to_s) t = match o with

335 | Get ia ->

336 let ill = Array.to_list (Array.map (fun i -> [i]) ia) in

337 (fun sd ->

338 let ones = Array.(make (length (shape t)) 1) in

339 set_slice ill (zeros (shape t)) (scalar_mul sd (create ones 1.0))

340 )

341 | Sum -> fun sd -> scalar_mul sd (create (shape t) 1.0)

342 let der_s 't_to_t (o : s't_to_t) s t = match o with

343 | ScalarMultiply -> fun td -> (sum (t * td), scalar_mul s td)

344 | SubtractScalar -> fun td -> (~. (sum td), td)

345 let der_ta_to_t (o : ta_to_t) ta = match o with

346 | Concatenate io ->

347 let i = (match io with

348 | None -> 0

349 | Some i -> i

350 ) in

351 fun td -> split ~axis:i (Array.map (fun x -> (shape x).(i)) ta) td

352 | Stack io ->

353 let i = (match io with

354 | None -> 0

355 | Some i -> i

356 ) in

357 (fun td ->

358 let shp = shape td in

359 let ndim = Array.length shp in

360 let axis = Owl_utils.adjust_index i ndim in

361 let inp_shp = shape ta.(0) in
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362 split ~axis:i (Array.make shp.(axis) 1) td

363 |> Array.map (fun x -> reshape x inp_shp)

364 )

365 let der_t_to_ta (o : t_to_ta) _ = match o with

366 | Split (io , _) ->

367 let i = (match io with

368 | None -> 0

369 | Some i -> i

370 ) in

371 fun tda -> concatenate ~axis:i tda

372 end

B.2 Reverse Mode with Tensors

1 open Effect.Deep

2 open Modules_effect_handlers_smooth_tensor

3

4 type 't prop = {v : 't; mutable dv : 't}

5

6 module Reverse_Non_Diff (T : SMOOTH_NON_DIFF) : SMOOTH_NON_DIFF

7 with type scalar = T.scalar prop

8 with type tensor = T.tensor prop

9 = struct

10 type scalar = T.scalar prop

11 type tensor = T.tensor prop

12

13 let shape t = T.shape t.v

14 let add_ x dx = T.add_ x.v dx.v; T.add_ x.dv dx.dv

15 end

16

17 module Reverse (T : SMOOTH) = struct

18 include Smooth (Reverse_Non_Diff (T : SMOOTH_NON_DIFF))

19

20 let reverse = {

21 retc = (fun x -> x);

22 exnc = raise;

23 effc = (fun (type a) (eff : a Effect.t) ->

24 match eff with

25 | Ap_u_to_s o -> Some (fun (k : (a, _) continuation) -> let open T in

26 continue k {v = op_u_to_s o; dv = c 0.0}

27 )

28 | Ap_s_to_s (o, s) -> Some (fun k -> let open T in

29 let r = {v = op_s_to_s o s.v; dv = c 0.0} in

30 continue k r;

31 s.dv <- s.dv +. (der_s_to_s o s.v r.dv)

32 )

33 | Ap_s 's_to_s (o, s1, s2) -> Some (fun k -> let open T in

34 let r = {v = op_s 's_to_s o s1.v s2.v; dv = c 0.0} in

35 continue k r;

36 let (dv1 , dv2) = der_s 's_to_s o s1.v s2.v r.dv in

37 s1.dv <- s1.dv +. dv1;

38 s2.dv <- s2.dv +. dv2

39 )
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40 | Ap_u_to_t o -> Some (fun k -> let open T in

41 let v = op_u_to_t o in

42 continue k {v = v; dv = create (shape v) 0.0}

43 )

44 | Ap_t_to_t (o, t) -> Some (fun k -> let open T in

45 let v = op_t_to_t o t.v in

46 let r = {v = v; dv = create (shape v) 0.0} in

47 continue k r;

48 let dv = der_t_to_t o t.v r.dv in

49 if shape t.dv = shape dv then add_ t.dv dv else t.dv <- t.dv + dv

50 )

51 | Ap_t 't_to_t (o, t1, t2) -> Some (fun k -> let open T in

52 let v = op_t 't_to_t o t1.v t2.v in

53 let r = {v = v; dv = create (shape v) 0.0} in

54 continue k r;

55 let (dv1 , dv2) = der_t 't_to_t o t1.v t2.v r.dv in

56 if shape t1.dv = shape dv1

57 then add_ t1.dv dv1 else t1.dv <- t1.dv + dv1;

58 if shape t2.dv = shape dv2

59 then add_ t2.dv dv2 else t2.dv <- t2.dv + dv2

60 )

61 | Ap_t_to_s (o, t) -> Some (fun k -> let open T in

62 let r = {v = op_t_to_s o t.v; dv = c 0.0} in

63 continue k r;

64 let dv = der_t_to_s o t.v r.dv in

65 if shape t.dv = shape dv then add_ t.dv dv else t.dv <- t.dv + dv

66 )

67 | Ap_s 't_to_t (o, s, t) -> Some (fun k -> let open T in

68 let v = op_s 't_to_t o s.v t.v in

69 let r = {v = v; dv = create (shape v) 0.0} in

70 continue k r;

71 let (ds, dt) = der_s 't_to_t o s.v t.v r.dv in

72 s.dv <- s.dv +. ds;

73 if shape t.dv = shape dt then add_ t.dv dt else t.dv <- t.dv + dt

74 )

75 | Ap_ta_to_t (o, ta) -> Some (fun k -> let open T in

76 let tva = Array.(map (fun t -> t.v) ta) in

77 let v = op_ta_to_t o tva in

78 let r = {v = v; dv = create (shape v) 0.0} in

79 continue k r;

80 let rdva = der_ta_to_t o tva r.dv in

81 ignore Array.(map2 (fun t rdv -> (

82 if shape t.dv = shape rdv then add_ t.dv rdv else t.dv <- t.dv + rdv

83 )) ta rdva)

84 )

85 | Ap_t_to_ta (o, t) -> Some (fun k -> let open T in

86 let va = op_t_to_ta o t.v in

87 let ra =

88 Array .(map (fun v -> {v = v; dv = create (shape v) 0.0}) va)

89 in

90 continue k ra;

91 let rdva = Array.(map (fun r -> r.dv) ra) in
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92 let dv = der_t_to_ta o t.v rdva in

93 if shape t.dv = shape dv then add_ t.dv dv else t.dv <- t.dv + dv

94 )

95 | _ -> None

96 )

97 }

98

99 let grad f ta =

100 let ra = Array.map (fun t -> {v = t; dv = T.( create (shape t) 0.0)}) ta in

101 match_with (fun ta -> (f ta).dv <- T.c 1.0) ra reverse;

102 Array.map (fun r -> r.dv) ra

103 end
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