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Attribution

• Slides with ∗ at the end of their title were written with the help of GPT 4o (for
lazy LATEX’ing).

• Most things for the calculus are in line with Crole 1994.
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Overview

• What do we want to prove?
• Lambda calculus (review?)

• Types
• Signatures
• Syntax
• Typing judgments
• Denotational semantics

• Logical relations
• Types
• Signatures
• Terms
• Fundamental theorem
• Application
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What do we want to prove?

• Proving something about all programs in a language?
• If we have + and ×, how can we prove even in ⇒ even out?
• Logical relations!
• Also can prove more complicated and interesting theorems.
• For example:

• Termination: do your programs stop?
• Type safety: do your programs keep going?
• Optimizations: why can I rewrite my program?
• Representation independence: internals don’t matter if you hide them.
• Security: show the output doesn’t depend on secure information.
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Types*

𝛼, 𝛽 ∶∶= 𝜏 ∣ 1 ∣ 𝛼1 × 𝛼2 ∣ 𝛼 → 𝛽

Where:
• 𝜏 is a ground type from a fixed set of symbols, e.g. {Int,Bool,…},
• 1 is the unit type,
• 𝛼1 × 𝛼2 is a product type,
• 𝛼 → 𝛽 is a function type.
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Signatures

A signature 𝛴 = (𝛴const, 𝛴func) is composed of two sets, namely
• 𝛴const whose elements are constant symbols 𝑐 ∶ 𝜏; and
• 𝛴func whose elements are function symbols 𝑓 ∶ (𝜏1,… , 𝜏𝑛) → 𝜏.

Everything is defined with respect to a signature 𝛴.

For example, assume that we have Int as ground type. Then we could defined
𝛴 = ({𝑛 ∶ 𝑛 ∈ ℤ, } , {+, ×}).
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Where:
• 𝑥 is a variable from a countably infinite set {𝑥, 𝑦, 𝑧,…},
• ⟨⟩ is the term of type 1,
• 𝑐 is a constant symbol in 𝛴const,
• 𝑓 is a function symbol in 𝛴func,
• 𝜆(𝑥 ∶ 𝛼).𝑀 is lambda abstraction with 𝑥 of type 𝛼,
• 𝑀𝑁 is application,
• ⟨𝑀1,𝑀2⟩ is a product,
• 𝜋1(𝑀) and 𝜋2(𝑀) are projections.
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Typing Judgments*

(𝑥 ∶ 𝛼) ∈ 𝛤
𝛤 ⊢ 𝑥 ∶ 𝛼 𝛤 ⊢ ⟨⟩ ∶ 1

𝑐 ∶ 𝜏 ∈ 𝛴const
𝛤 ⊢ 𝑐 ∶ 𝜏

𝛤 ⊢ 𝑀1 ∶ 𝜏1 ⋯ 𝛤 ⊢ 𝑀𝑛 ∶ 𝜏𝑛 𝑓 ∶ (𝜏1,… , 𝜏𝑛) → 𝜏 ∈ 𝛴func
𝛤 ⊢ 𝑓(𝑀1,… ,𝑀𝑛) ∶ 𝜏

𝛤, 𝑥 ∶ 𝛼 ⊢ 𝑀 ∶ 𝛽
𝛤 ⊢ 𝜆(𝑥 ∶ 𝛼).𝑀 ∶ 𝛼 → 𝛽

𝛤 ⊢ 𝑀 ∶ 𝛼 → 𝛽 𝛤 ⊢ 𝑁 ∶ 𝛼
𝛤 ⊢ 𝑀𝑁 ∶ 𝛽

𝛤 ⊢ 𝑀1 ∶ 𝛼1 𝛤 ⊢ 𝑀2 ∶ 𝛼2
𝛤 ⊢ ⟨𝑀1,𝑀2⟩ ∶ 𝛼1 × 𝛼2

𝛤 ⊢ 𝑀 ∶ 𝛼1 × 𝛼2
𝛤 ⊢ 𝜋1(𝑀) ∶ 𝛼1

𝛤 ⊢ 𝑀 ∶ 𝛼1 × 𝛼2
𝛤 ⊢ 𝜋2(𝑀) ∶ 𝛼2
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Set-Theoretic Denotational Semantics for Types*

Let 𝜌 be a function that assigns a set 𝜌(𝜏) to each ground type 𝜏, e.g., 𝜌(Int) = ℤ,
𝜌(Bool) = {true, false}.

Then to type 𝛼, we are going to assign a set J𝛼K𝜌 as follows:
• J𝜏K𝜌 = 𝜌(𝜏)
• J1K𝜌 = {⋆}
• J𝛼1 × 𝛼2K𝜌 = J𝛼1K𝜌 × J𝛼2K𝜌
• J𝛼 → 𝛽K𝜌 = J𝛼K𝜌 → J𝛽K𝜌
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Set-Theoretic Denotational Semantics for Signatures

For a fixed 𝜌 assigning ground types to sets, we can give an interpretation 𝜎 to the
constants and functions of a signature 𝛴 = (𝛴const, 𝛴func):
• for each 𝑐 ∶ 𝜏 ∈ 𝛴const, an element 𝜎(𝑐) ∈ 𝜌(𝜏); and
• for each 𝑓 ∶ (𝜏1,… , 𝜏𝑛) → 𝜏 ∈ 𝛴func, a function 𝜎(𝑓) ∈ 𝜌(𝜏1) ×⋯× 𝜌(𝜏𝑛) → 𝜌(𝜏).

Note that 𝜎(𝑐) ∈ J𝜏K𝜌 and 𝜎(𝑓) ∈ J𝜏1 ×⋯× 𝜏𝑛 → 𝜏K𝜌.
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constants and functions of a signature 𝛴 = (𝛴const, 𝛴func):
• for each 𝑐 ∶ 𝜏 ∈ 𝛴const, an element 𝜎(𝑐) ∈ 𝜌(𝜏); and
• for each 𝑓 ∶ (𝜏1,… , 𝜏𝑛) → 𝜏 ∈ 𝛴func, a function 𝜎(𝑓) ∈ 𝜌(𝜏1) ×⋯× 𝜌(𝜏𝑛) → 𝜌(𝜏).

Note that 𝜎(𝑐) ∈ J𝜏K𝜌 and 𝜎(𝑓) ∈ J𝜏1 ×⋯× 𝜏𝑛 → 𝜏K𝜌.
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Set-Theoretic Denotational Semantics for Terms in Context*

Fix a fixed 𝜌 and 𝜎, we can define the meaning of a lambda term. In a context
𝛤 = 𝑥1 ∶ 𝛼1,… , 𝑥𝑛 ∶ 𝛼𝑛, the denotational semantics of a term 𝑀 is a function:

J𝛤 ⊢ 𝑀 ∶ 𝛼K𝜌,𝜍 ∶ J𝛼1 ×⋯× 𝛼𝑛K𝜌 → J𝛼K𝜌

For a 𝛤 as above, we will write 𝛾 for an element of J𝛼1 ×⋯× 𝛼𝑛K𝜌 and write 𝛾(𝑥𝑖) for
the 𝑖th component of the tuple.

We write 𝛾[𝑥 ↦ 𝑣] to denote the extension of 𝛾 mapping 𝑥 to 𝑣. E.g. for
𝛤 = 𝑥 ∶ Int, 𝑦 ∶ Int if {𝑥 ↦ 1, 𝑦 ↦ 2} ∈ JInt × IntK𝜌 then

{𝑥 ↦ 1, 𝑦 ↦ 2}[𝑧 ↦ 3] ∶= {𝑥 ↦ 1, 𝑦 ↦ 2, 𝑧 ↦ 3} ∈ JInt × Int × IntK𝜌

for 𝛤 = 𝑥 ∶ Int, 𝑦 ∶ Int, 𝑧 ∶ Int.
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Recursive Definition of Denotation for Terms*

The denotational semantics J𝛤 ⊢ 𝑀 ∶ 𝛼K𝜌,𝜍(𝛾) is defined recursively as follows:
• J𝛤 ⊢ 𝑥 ∶ 𝛼K𝜌,𝜍(𝛾) = 𝛾(𝑥)
• J𝛤 ⊢ ⟨⟩ ∶ 1K𝜌,𝜍(𝛾) = ⋆
• J𝛤 ⊢ 𝑐 ∶ 𝜏K𝜌,𝜍(𝛾) = 𝜎(𝑐)
• J𝛤 ⊢ 𝑓(𝑀1,… ,𝑀𝑛) ∶ 𝜎K𝜌,𝜍(𝛾) =

𝜎(𝑓)(J𝛤 ⊢ 𝑀1 ∶ 𝜏1K𝜌,𝜍(𝛾),… , J𝛤 ⊢ 𝑀𝑛 ∶ 𝜏𝑛K𝜌,𝜍(𝛾))
• J𝛤 ⊢ 𝜆(𝑥 ∶ 𝛼).𝑀 ∶ 𝛼 → 𝛽K𝜌,𝜍(𝛾) = 𝜆𝑣.J𝛤, 𝑥 ∶ 𝛼 ⊢ 𝑀 ∶ 𝛽K𝜌,𝜍(𝛾[𝑥 ↦ 𝑣])
• J𝛤 ⊢ 𝑀𝑁 ∶ 𝛽K𝜌,𝜍(𝛾) = J𝑀K𝜌,𝜍(𝛾)(J𝑁K𝜌,𝜍(𝛾))
• J𝛤 ⊢ ⟨𝑀1,𝑀2⟩ ∶ 𝛼1 × 𝛼2K𝜌,𝜍(𝛾) = (J𝑀1K𝜌,𝜍(𝛾), J𝑀2K𝜌,𝜍(𝛾))
• J𝛤 ⊢ 𝜋1(𝑀) ∶ 𝛼1K𝜌,𝜍(𝛾) = 𝜋1(J𝑀K𝜌,𝜍(𝛾))
• J𝛤 ⊢ 𝜋2(𝑀) ∶ 𝛼2K𝜌,𝜍(𝛾) = 𝜋2(J𝑀K𝜌,𝜍(𝛾))
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Logical Relations Semantics for Types

We can view logical relations as a new type of denotational semantics. We begin with
the types. For each type 𝛼, we’re going to define two sets, 𝑃 and 𝐴, such that 𝑃 ⊆ 𝐴.
The set 𝑃 is our predicate.

Let 𝜌 be a function that assigns a pair of sets (𝜌𝒫(𝜏), 𝜌𝒜(𝜏)) to each ground type 𝜏
such that 𝜌𝒫(𝜏) ⊆ 𝜌𝒜(𝜏), e.g., 𝜌(Int) = ({2𝑚 ∶ 𝑚 ∈ ℤ} , ℤ).

Then to type 𝛼, we are going to assign a pair of sets ⦃𝛼⦄𝜌 = (𝒫⦃𝛼⦄𝜌, 𝒜⦃𝛼⦄𝜌) as follows:
• ⦃𝜏⦄𝜌 = (𝜌𝒫(𝜏), 𝜌𝒜(𝜏))
• ⦃1⦄𝜌 = ({⋆}, {⋆})
• ⦃𝛼1 × 𝛼2⦄𝜌 = (𝒫⦃𝛼1⦄𝜌 × 𝒫⦃𝛼2⦄𝜌, 𝒜⦃𝛼1⦄𝜌 ×𝒜⦃𝛼2⦄𝜌)
• ⦃𝛼 → 𝛽⦄𝜌 = ({𝑓 ∶ ∀𝑥 ∈ 𝒫⦃𝛼⦄𝜌.𝑓(𝑥) ∈ 𝒫⦃𝛽⦄𝜌} , 𝒜⦃𝛼⦄𝜌 → 𝒜⦃𝛽⦄𝜌)

Note that 𝒜⦃𝛼⦄𝜌 = J𝛼K𝜌𝒜.
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Logical Relations Semantics for Signatures

For a fixed 𝜌 assigning ground types to sets, we can give an interpretation 𝜎 to the
constants and functions of a signature 𝛴 = (𝛴const, 𝛴func):
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𝜎(𝑓) ∈ 𝜌𝒜(𝜏1) ×⋯ × 𝜌𝒜(𝜏𝑛) → 𝜌𝒜(𝜏)

such that

(𝑥1,… , 𝑥𝑛) ∈ 𝜌𝒫(𝜏1) ×⋯ × 𝜌𝒫(𝜏𝑛) ⇒ 𝜎(𝑓)(𝑥1,… , 𝑥𝑛) ∈ 𝜌𝒫(𝜏).

Note that 𝜎(𝑐) ∈ 𝒫⦃𝜏⦄𝜌 and 𝜎(𝑓) ∈ 𝒫⦃𝜏1 ×⋯× 𝜏𝑛 → 𝜏⦄𝜌, as well as that 𝜎(𝑐) ∈ J𝜏K𝜌𝒜
and 𝜎(𝑓) ∈ J𝜏1 ×⋯× 𝜏𝑛 → 𝜏K𝜌𝒜.

If we want to forget that 𝜎 preserves our predicates, we will write 𝜎𝒜.
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Logical Relations Semantics for Terms in Context

Fix a fixed 𝜌 and 𝜎, we want to define the meaning of a lambda term. In a context
𝛤 = 𝑥1 ∶ 𝛼1,… , 𝑥𝑛 ∶ 𝛼𝑛, we want an interpretation of type

⦃𝛤 ⊢ 𝑀 ∶ 𝛼⦄𝜌,𝜍 ∶ 𝒜⦃𝛼1 ×⋯× 𝛼𝑛⦄𝜌 → 𝒜⦃𝛼⦄𝜌
such that for all 𝛾 ∈ 𝒫⦃𝛼1 ×⋯× 𝛼𝑛⦄𝜌 we have ⦃𝛤 ⊢ 𝑀 ∶ 𝛼⦄𝜌,𝜍(𝛾) ∈ 𝒫⦃𝛼⦄𝜌. I.e., we
map values satisfying our predicate to values satisfying our predicate.

How do we define this semantics?
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Fundamental Theorem of Logical Relations

Recall that 𝒜⦃𝛼⦄𝜌 = J𝛼K𝜌𝒜. Thus, we can define

⦃𝛤 ⊢ 𝑀 ∶ 𝛼⦄𝜌,𝜍 ∶ 𝒜⦃𝛼1 ×⋯× 𝛼𝑛⦄𝜌 → 𝒜⦃𝛼⦄𝜌
as ⦃𝛤 ⊢ 𝑀 ∶ 𝛼⦄𝜌,𝜍 ∶= J𝛤 ⊢ 𝑀 ∶ 𝛼K𝜌𝒜,𝜍𝒜 if it actually preserves our predicates.

Theorem
Fix 𝜌 and 𝜎 for logical relations. For all 𝛾 ∈ 𝒫⦃𝛼1 ×⋯× 𝛼𝑛⦄𝜌 we have
J𝛤 ⊢ 𝑀 ∶ 𝛼K𝜌𝒜,𝜍𝒜(𝛾) ∈ 𝒫⦃𝛼⦄𝜌.

Proof.
Induction on the structure of 𝑀.

This is known as the Fundamental Theorem of Logical Relations, or the Basic Lemma
of Logical Relations. Note that we had to choose the interpretation 𝜎 of our constants
and built-in functions to respect 𝜌𝒫.
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Example Application: Preserving Evenness

• Fix the ground types to be {Int}.
• Fix a signature 𝛴 = ({𝑛 ∶ 𝑛 ∈ ℤ, 𝑛 even} , {+, ×}), everything using Int.
• Interpret our ground types with 𝜌(Int) = ({2𝑚 ∶ 𝑚 ∈ ℤ} , ℤ).
• Interpret our signature with 𝜎 (𝑛) = 𝑛, 𝜎 (+) = +, 𝜎 (×) = × and check that our

functions preserve even numbers.
• Apply the theorem! For example, for all terms 𝑥 ∶ Int ⊢ 𝑀 ∶ Int, we have

𝑛 ∈ 𝒫⦃Int⦄𝜌 ⇒ J𝑥 ∶ Int ⊢ 𝑀 ∶ IntK𝜌𝒜,𝜍(𝑛) ∈ 𝒫⦃Int⦄𝜌
which is equivalent to

𝑛 even ⇒ J𝑥 ∶ Int ⊢ 𝑀 ∶ IntK𝜌𝒜,𝜍(𝑛) even.

• Can also show that all polynomials with even coefficients preserve evenness.
• Importantly, the theorem also applies to contexts with function types. If we have
𝑓 ∶ Int → Int, we are forced to feed in a function from 𝒫⦃Int → Int⦄𝜌, which are
exactly even preserving functions!
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Example Application: Preserving Evenness
• Fix the ground types to be {Int}.
• Fix a signature 𝛴 = ({𝑛 ∶ 𝑛 ∈ ℤ, 𝑛 even} , {+, ×}), everything using Int.
• Interpret our ground types with 𝜌(Int) = ({2𝑚 ∶ 𝑚 ∈ ℤ} , ℤ).
• Interpret our signature with 𝜎 (𝑛) = 𝑛, 𝜎 (+) = +, 𝜎 (×) = × and check that our

functions preserve even numbers.
• Apply the theorem! For example, for all terms 𝑥 ∶ Int ⊢ 𝑀 ∶ Int, we have

𝑛 ∈ 𝒫⦃Int⦄𝜌 ⇒ J𝑥 ∶ Int ⊢ 𝑀 ∶ IntK𝜌𝒜,𝜍(𝑛) ∈ 𝒫⦃Int⦄𝜌
which is equivalent to

𝑛 even ⇒ J𝑥 ∶ Int ⊢ 𝑀 ∶ IntK𝜌𝒜,𝜍(𝑛) even.

• Can also show that all polynomials with even coefficients preserve evenness.
• Importantly, the theorem also applies to contexts with function types. If we have
𝑓 ∶ Int → Int, we are forced to feed in a function from 𝒫⦃Int → Int⦄𝜌, which are
exactly even preserving functions!
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Conclusion

• We saw the
• syntax,
• typing rules, and
• set-theoretic denotational semantics

of simply typed lambda calculus with products, ground types, constants, and
built-in functions.

• We then extended the denotational semantics to include a predicate at each type,
and observed that all of our constructions respected these predicates.

• The preservation gave use the Fundamental Theorem of Logical Relations, which
we then applied to an example.
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Free Variables*

The function FV(𝑀) is defined recursively as follows:
• FV(𝑥) = {𝑥}
• FV(⟨⟩) = ∅
• FV(𝑐) = ∅
• FV(𝑓(𝑀1,… ,𝑀𝑛)) = ⋃𝑛

𝑖=1 FV(𝑀𝑖)

• FV(𝜆(𝑥 ∶ 𝛼).𝑀) = FV(𝑀) ∖ {𝑥}
• FV(𝑀𝑁) = FV(𝑀) ∪ FV(𝑁)
• FV(⟨𝑀1,𝑀2⟩) = FV(𝑀1) ∪ FV(𝑀2)
• FV(𝜋1(𝑀)) = FV(𝑀)
• FV(𝜋2(𝑀)) = FV(𝑀)

For example, FV(𝜆(𝑥 ∶ 𝛼).𝑦 𝑥) = {𝑦}.
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Capture-avoiding Substitution*

Substitution of 𝑁 for 𝑥 in 𝑀 in a capture-avoiding way, denoted 𝑀[𝑥 ∶= 𝑁], is defined
recursively as follows:
• 𝑥[𝑥 ∶= 𝑁] = 𝑁
• 𝑦[𝑥 ∶= 𝑁] = 𝑦, for 𝑦 ≠ 𝑥

• ⟨⟩[𝑥 ∶= 𝑁] = ⟨⟩
• 𝑐[𝑥 ∶= 𝑁] = 𝑐
• 𝑓(𝑀1,… ,𝑀𝑛)[𝑥 ∶= 𝑁] = 𝑓(𝑀1[𝑥 ∶= 𝑁],… ,𝑀𝑛[𝑥 ∶= 𝑁]))
• (𝑀𝑃)[𝑥 ∶= 𝑁] = (𝑀[𝑥 ∶= 𝑁]) (𝑃[𝑥 ∶= 𝑁])
• ⟨𝑀1,𝑀2⟩[𝑥 ∶= 𝑁] = ⟨𝑀1[𝑥 ∶= 𝑁],𝑀2[𝑥 ∶= 𝑁]⟩
• 𝜋1(𝑀)[𝑥 ∶= 𝑁] = 𝜋1(𝑀[𝑥 ∶= 𝑁])
• 𝜋2(𝑀)[𝑥 ∶= 𝑁] = 𝜋2(𝑀[𝑥 ∶= 𝑁])
• …
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Capture-avoiding Substitution (continued)*

Most importantly, we have the rule for abstraction:

• (𝜆(𝑦 ∶ 𝛼).𝑀)[𝑥 ∶= 𝑁] = {
𝜆(𝑦 ∶ 𝛼).𝑀[𝑥 ∶= 𝑁] if 𝑦 ≠ 𝑥 and 𝑦 ∉ FV(𝑁)
𝜆(𝑧 ∶ 𝛼).𝑀[𝑦 ∶= 𝑧][𝑥 ∶= 𝑁] if 𝑦 = 𝑥 or 𝑦 ∈ FV(𝑁)

Here are two examples:
• (𝜆(𝑦 ∶ 𝛼).𝑥)[𝑥 ∶= 𝑧] = 𝜆(𝑦 ∶ 𝛼).𝑧
• (𝜆(𝑦 ∶ 𝛼).𝑦 𝑥)[𝑥 ∶= 𝑦] = 𝜆(𝑧 ∶ 𝛼).𝑧 𝑦
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Equations-in-Context*

An equation-in-context is expressed as:

𝛤 ⊢ 𝑀 = 𝑁 ∶ 𝛼

The judgments means that in the type context 𝛤, the terms 𝑀 and 𝑁 are considered
equal and both have type 𝛼.

Equations-in-contexts allow us to perform equational reasoning while respecting the
types assigned to the variables involved.
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Equational Reasoning Rules*

𝛤 ⊢ 𝑀 ∶ 𝛼
𝛤 ⊢ 𝑀 = 𝑀 ∶ 𝛼 (Refl)

𝛤 ⊢ 𝑀 = 𝑁 ∶ 𝛼
𝛤 ⊢ 𝑁 = 𝑀 ∶ 𝛼 (Sym)

𝛤 ⊢ 𝑀 = 𝑁 ∶ 𝛼 𝛤 ⊢ 𝑁 = 𝑃 ∶ 𝛼
𝛤 ⊢ 𝑀 = 𝑃 ∶ 𝛼 (Trans)
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Weakening and Substitution Rules*

𝛤 ⊢ 𝑀 = 𝑁 ∶ 𝛼
𝛤, 𝑥 ∶ 𝛽 ⊢ 𝑀 = 𝑁 ∶ 𝛼 (Weak)

𝛤, 𝑥 ∶ 𝛽 ⊢ 𝑀 = 𝑁 ∶ 𝛼 𝛤 ⊢ 𝑃 ∶ 𝛽
𝛤 ⊢ 𝑀[𝑥 ∶= 𝑃] = 𝑁[𝑥 ∶= 𝑃] ∶ 𝛼

(Subs)



26/18

Rules for Unit and Binary Products*

𝛤 ⊢ 𝑀 ∶ 1
𝛤 ⊢ 𝑀 = ⟨⟩ ∶ 1

(Unit-Eq)

𝛤 ⊢ 𝑀1 ∶ 𝛼1 𝛤 ⊢ 𝑀2 ∶ 𝛼2
𝛤 ⊢ 𝜋1(⟨𝑀1,𝑀2⟩) = 𝑀1 ∶ 𝛼1

(Proj1)

𝛤 ⊢ 𝑀1 ∶ 𝛼1 𝛤 ⊢ 𝑀2 ∶ 𝛼2
𝛤 ⊢ 𝜋2(⟨𝑀1,𝑀2⟩) = 𝑀2 ∶ 𝛼2

(Proj2)

𝛤 ⊢ 𝑃 ∶ 𝛼1 × 𝛼2
𝛤 ⊢ ⟨𝜋1(𝑃), 𝜋2(𝑃)⟩ = 𝑃 ∶ 𝛼1 × 𝛼2

(𝜂-Prod)
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Rules for Functions*

𝛤, 𝑥 ∶ 𝛼 ⊢ 𝑀 ∶ 𝛽 𝛤 ⊢ 𝑁 ∶ 𝛼
𝛤 ⊢ (𝜆(𝑥 ∶ 𝛼).𝑀)𝑁 = 𝑀[𝑥 ∶= 𝑁] ∶ 𝛽

(𝛽-Eq)

𝑥 ∉ FV(𝑀)
𝛤 ⊢ 𝜆(𝑥 ∶ 𝛼).(𝑀𝑥) = 𝑀 ∶ 𝛼 → 𝛽

(𝜂-Eq)

𝛤, 𝑥 ∶ 𝛼 ⊢ 𝑀 = 𝑁 ∶ 𝛽
𝛤 ⊢ 𝜆(𝑥 ∶ 𝛼).𝑀 = 𝜆(𝑥 ∶ 𝛼).𝑁 ∶ 𝛼 → 𝛽

(𝜆-Cong)
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Axioms

We also want axioms in order to reason about elements of our signature 𝛴. An axiom
is a pair of terms (𝛤 ⊢ 𝑀 ∶ 𝛼, 𝛤 ⊢ 𝑁 ∶ 𝛼) of terms of the same type in the same
context. For a set of axioms 𝛺, we have the rule

(𝛤 ⊢ 𝑀 ∶ 𝛼, 𝛤 ⊢ 𝑁 ∶ 𝛼) ∈ 𝛺
𝛤 ⊢ 𝑀 = 𝑁 ∶ 𝛼 (Axiom)

Note that it is possible to prove everything equals everything else if you choose your
axioms wrong!



29/18

Soundness

Theorem
Let 𝛺 be a set of axioms in a signature 𝛴. Let 𝜌 and 𝜎 be assignments such that, for
all (𝛤 ⊢ 𝑀 ∶ 𝛼, 𝛤 ⊢ 𝑁 ∶ 𝛼) ∈ 𝛺, we have J𝛤 ⊢ 𝑀 ∶ 𝛼K𝜌,𝜍 = J𝛤 ⊢ 𝑁 ∶ 𝛼K𝜌,𝜍. Then, for
all valid equations 𝛤 ⊢ 𝑀 = 𝑁 ∶ 𝛼 we have

J𝛤 ⊢ 𝑀 ∶ 𝛼K𝜌,𝜍 = J𝛤 ⊢ 𝑁 ∶ 𝛼K𝜌,𝜍

Proof.
By induction on the proof of 𝛤 ⊢ 𝑀 = 𝑁 ∶ 𝛼.

Thus, if we respect the axioms, then equivalent terms have equal denotational
semantics. This is the minimum we expect from denotational semantics.
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