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* Lambda calculus (review?)

* Types

* Signatures
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What do we want to prove?

* Proving something about all programs in a language?
* If we have + and X, how can we prove even in = even out?
* Logical relations!

* Also can prove more complicated and interesting theorems.
* For example:

* Termination: do your programs stop?

* Type safety: do your programs keep going?

* Optimizations: why can | rewrite my program?

* Representation independence: internals don't matter if you hide them.
* Security: show the output doesn’'t depend on secure information.
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Types*

apfii=t|l|lgXa|a—>p
Where:
* T is a ground type from a fixed set of symbols, e.g. {Int, Bool, ...},
* 1 is the unit type,
* o; X a, is a product type,

* a — fis a function type.
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Signatures

A signature X = (X nets Ziunc) IS composed of two sets, namely

* Xonst Whose elements are constant symbols ¢ : 7; and

* Zrunc Whose elements are function symbols f : (1,...,7,) = T.
Everything is defined with respect to a signature X.

For example, assume that we have Int as ground type. Then we could defined
s=(n:nez}.ft.x))
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Syntax*

M,N ::=x|Qlc| f(My,....Mp) | Ax @ @).M | MN | (My, M) | my(M) | 7r,(M)

Where:
* X is a variable from a countably infinite set {x,y, z, ...},
* () is the term of type 1,
* cis a constant symbol in X,
¢ fis a function symbol in X,
* A(x : a).M is lambda abstraction with x of type «,
* MN is application,
* (M;,M,) is a product,
* (M) and 7,(M) are projections.
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Typing Judgments*

x:ax)er C:ITEZ onet
I'kx:a 'H{):1 I'kc:t
'-M;:75 -« I'EM,:15 f:(@ . T) >TE Zyn

Tk fMy,....M,) : t

'x:aFM:B '-M:a—-8 I'EN:«a
T''FAx:a)M:a—-f I'MN:j

I'-M;:0y 'EM,:a, I'HFM:o Xa, I'EM:o Xa,

I'E (M, M) : a; X a, 'tmM) : o 't m(M) : a,
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Let p be a function that assigns a set p(7) to each ground type 7, e.g., p(Int) = Z

©o(Bool) = {true, false}.

Then to type a, we are going to assign a set [af, as follows:
° [[Tﬂp = p(7)
* 1 = {x}
* Jou X az]p =[] p X [l

¢ fa— 6]];3 [[‘x]]p Hﬁ]]p



Set-Theoretic Denotational Semantics for Signatures



Set-Theoretic Denotational Semantics for Signatures

For a fixed p assigning ground types to sets, we can give an interpretation o to the
constants and functions of a signature ¥ = (X onst> Zfunc):



Set-Theoretic Denotational Semantics for Signatures

For a fixed p assigning ground types to sets, we can give an interpretation o to the
constants and functions of a signature ¥ = (X onst> Zfunc):

* for each ¢ : 7 € X, an element o(c) € p(7); and



Set-Theoretic Denotational Semantics for Signatures

For a fixed p assigning ground types to sets, we can give an interpretation o to the
constants and functions of a signature ¥ = (X onst> Zfunc):

* for each ¢ : 7 € X, an element o(c) € p(7); and
* for each f : (71, ..., Ty) = T € Zgune, a function o(f) € p(ry) X---X p(7,) = p(7).



Set-Theoretic Denotational Semantics for Signatures

For a fixed p assigning ground types to sets, we can give an interpretation o to the
constants and functions of a signature ¥ = (X onst> Zfunc):

* for each ¢ : 7 € X, an element o(c) € p(7); and
* for each f : (71, ..., Ty) = T € Zgune, a function o(f) € p(ry) X---X p(7,) = p(7).
Note that o(c) € [z], and o(f) € [ry X -+* X T, = 7],
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Fix a fixed p and o, we can define the meaning of a lambda term. In a context
I'=x;:a,..,x, : ay, the denotational semantics of a term M is a function:
[TEM: a]pq: [ag X Xay]o = [a],

For a I' as above, we will write y for an element of [a; X --- X a,], and write y(x;) for
the it" component of the tuple.

We write y[x — v] to denote the extension of y mapping x to v. E.g. for
F'=x:Inty:Intif{x~ 1,y 2} € [Int X Int], then

xplLy- 2z 3] i={x— 1y~ 2,z 3} € [Int XInt X Int],

for’'=x:Int,y : Int,z : Int.
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Let p be a function that assigns a pair of sets (pp(7), 04(7)) to each ground type T
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We can view logical relations as a new type of denotational semantics. We begin with
the types. For each type o, we're going to define two sets, P and A, such that P C A.
The set P is our predicate.

Let p be a function that assigns a pair of sets (pp(7), 04(7)) to each ground type T
such that pp(7) C p4(7), e.g., p(Int) = ({2m : m € 7},7).
Then to type a, we are going to assign a pair of sets {afl, = (?{[a]}p,./l{[oc]}p) as follows:
* {zho = (pp(7), pA(T))
* {1f = (b {xD
* fa x asll, = (?{[all}p X Plaglto, Aoy by X A{[fxz]}p)
* fa— Bl = ({f : Vx € Plal,.f(x) € P{Bl,}, Alad, — A1BL,)
Note that Afal, = [a],,-
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Logical Relations Semantics for Signatures

For a fixed p assigning ground types to sets, we can give an interpretation o to the
constants and functions of a signature X = (X net> Zrunc):

* foreach ¢ : 7 € 2., an element o(c) € pp(7); and

* for each f : (7y,...,Ty) = T € Zgyne, @ function

a(f) € pa(m) X -+ X pa(1,) = p4(7)

such that
(X155 Xp) € pp(T1) X = X pp(T) = o()(x1s .., X)) € pop(T).

Note that o(c) € P{r], and o(f) € P{r; X --- X 7, = 7}, as well as that o(c) € [7],,
and o(f) € [fy X =+ X7, = 7] -

If we want to forget that o preserves our predicates, we will write gy.
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Logical Relations Semantics for Terms in Context

Fix a fixed p and o, we want to define the meaning of a lambda term. In a context
I'=x;:a,..,X, : a,, we want an interpretation of type
{Ire=m:oal, s Al x - X ayl, = Alal,

such that for all y € P{a; X --- X a,l}, we have {I" =M : aff, ;(y) € P{afl,. le., we
map values satisfying our predicate to values satisfying our predicate.

How do we define this semantics?
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Fundamental Theorem of Logical Relations

Recall that A{al, = [af,,. Thus, we can define

{Ire=m:oal, s Al x - X ayl, = Alal,

as{'FM:al,,:=['EM:qa],,s, if it actually preserves our predicates.

Theorem
Fix p and o for logical relations. For all y € P{a; X -+ X a, ]}, we have

[TEM: o], ., € Plal,.
Proof.

Induction on the structure of M. O

This is known as the Fundamental Theorem of Logical Relations, or the Basic Lemma
of Logical Relations. Note that we had to choose the interpretation o of our constants
and built-in functions to respect pyp.
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Example Application: Preserving Evenness

* Fix the ground types to be {Int}.

* Fix a signature X = ({Q ‘nesz,n even},{i,ﬁ}), everything using Int.

* Interpret our ground types with p(Int) = ({2m : m € 7}, 7).

* Interpret our signature with O'(ﬂ) = n,a(i) = +,a(§) = X and check that our
functions preserve even numbers.

* Apply the theorem! For example, for all terms x : Int = M : Int, we have

ne€ Plintl, =[x : Int =M : Int], ,(n) € P{int],
which is equivalent to

neven= [x : IntM : Int], (n) even.

* Can also show that all polynomials with even coefficients preserve evenness.

* Importantly, the theorem also applies to contexts with function types. If we have
J Int - Int, we are forced to feed in a function from P{Int — Int},, which are
exactly even preserving functions!



Conclusion




Conclusion

* We saw the
® syntax,
* typing rules, and
* set-theoretic denotational semantics

of simply typed lambda calculus with products, ground types, constants, and
built-in functions.



Conclusion

* We saw the
® syntax,
* typing rules, and
* set-theoretic denotational semantics

of simply typed lambda calculus with products, ground types, constants, and
built-in functions.

* We then extended the denotational semantics to include a predicate at each type,
and observed that all of our constructions respected these predicates.



Conclusion

* We saw the
® syntax,
* typing rules, and
* set-theoretic denotational semantics

of simply typed lambda calculus with products, ground types, constants, and
built-in functions.

* We then extended the denotational semantics to include a predicate at each type,
and observed that all of our constructions respected these predicates.

* The preservation gave use the Fundamental Theorem of Logical Relations, which
we then applied to an example.



Conclusion

* We saw the
® syntax,
* typing rules, and
* set-theoretic denotational semantics

of simply typed lambda calculus with products, ground types, constants, and
built-in functions.

* We then extended the denotational semantics to include a predicate at each type,
and observed that all of our constructions respected these predicates.

* The preservation gave use the Fundamental Theorem of Logical Relations, which
we then applied to an example.



Crole, Roy L. (1994). Categories for Types. Cambridge University Press.

«O>» «<Fr «Z»r «E»

Z[= DA™ 19/18



Free Variables*

The function FV(M) is defined recursively as follows:

* FV(x) = {x}
* FV(() =2
* FV(o) =@

* FV(f(M;,...,Mp)) = Ui FV(M))



Free Variables*

The function FV(M) is defined recursively as follows:
* FV(x) = {x}
* V() =0
* FV(o)=@
© FV(F(My, e M) = UL FV(M)
* FV(A(x : a).M) = FV(M) \ {x}



Free Variables*

The function FV(M) is defined recursively as follows:
* FV(x) = {x}
* V() =0
* FV(o) =0
* FV(F(My, ..., Mp)) = UL, FV(My)
* FV(A(x : a).M) = FV(M) \ {x}
* FV(MN) = FV(M) U FV(N)
© FV((My, M3)) = FV(M;) U FV(M,)
* FV(m M) = FV(M)
* FV(my(M)) = FV(M)



Free Variables*

The function FV(M) is defined recursively as follows:
* FV(x) = {x}
* V() =0
* FV(o) =0
* FV(F(My, ..., Mp)) = UL, FV(My)
* FV(A(x : a).M) = FV(M) \ {x}
* FV(MN) = FV(M) U FV(N)
© FV((My, M3)) = FV(M;) U FV(M,)
* FV(m M) = FV(M)
* FV(my(M)) = FV(M)

For example, FV(A(x : a).yx) = {y}.
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Capture-avoiding Substitution*

Substitution of N for x in M in a capture-avoiding way, denoted M[x := N], is defined
recursively as follows:

* x[x :=N]=N

* y[x :=N]=y, fory+#x

* OQlx :=N]=¢)

*c[x:=N]=c

* f(My,...,M,)[x :=N] = f(M;[x :=N],...,M,[x := NJ))
* (MP)[x :=N] = (M[x :=N])(P[x :=NJ])

* (M, M,)[x := N] = (M;[x := N|,My[x :=NJ])

* m(M)[x :=N] = m(M[x := N])

* T,(M)[x := N] = m,(M[x := NJ)



Capture-avoiding Substitution (continued)*

Most importantly, we have the rule for abstraction:
_|AQ t @).M[x :=N] if y# xand y ¢ FV(N)

P Ay M)x =N = Mz a)M[y :=z][x :=N] ify=xoryeFV(N)



Capture-avoiding Substitution (continued)*

Most importantly, we have the rule for abstraction:
Aly 1 a).M[x := N] if y# x and y & FV(N)
Ay M =N =17 SR g
Mz :a)M[y :=z][x :=N] ify=xoryeFV(N)

Here are two examples:
c AWy r)x)xi=z|=My : a).z
c AUy :a)yx)x:=yl=AMz: a)zy



Equations-in-Context*

An equation-in-context is expressed as:
I'FM=N:a«a

The judgments means that in the type context I, the terms M and N are considered
equal and both have type a.

Equations-in-contexts allow us to perform equational reasoning while respecting the
types assigned to the variables involved.



Equational Reasoning Rules*

I'FM:«a
TEM=M o (Refl)

TFN=M:a Y

'YM=N:a 'FN=P:a
TFM=P:«a (Trans)




Weakening and Substitution Rules*

'FM=N:«a
I'x: BFM=N:«a

(Weak)

I''x:BFM=N:a I'kP:§
I'EM[x :=P]=N[x:=P]: a

(Subs)



Rules for Unit and Binary Products*
I'EM:1 .
Frm= 1 UnEEa)

[EM cay TEM:dy oy
. roj
't ﬂ1(<M1,M2>) = M1 : O‘l

FEM @ TEMyia oo
F l— 7T2(<M1aM2>) = M2 : az

F |_ P . Cfl X az
-P
't (m(P),m,(P)) =P : a; X a, (n-Prod)




Rules for Functions*

I''x:akFM:f I''N:a«a
'k (A(x : ).M)N = M|[x :=N]:,6(

pB-Eq)

x & FV(M)
''FAx:a).Mx)=M :a—-f

(n-Eq)

I'x:aFM=N:§
Fl—/l(x:a).Mz/l(x:oc).N:oc%ﬁ(

A-Cong)



Axioms

We also want axioms in order to reason about elements of our signature ~. An axiom
is a pairof terms (' M : a,I' = N : a) of terms of the same type in the same
context. For a set of axioms £, we have the rule

ITFM:al' EN:a)eQ
I'FM=N:«

(Axiom)

Note that it is possible to prove everything equals everything else if you choose your
axioms wrong!



Soundness

Theorem

Let Q be a set of axioms in a signature X. Let p and o be assignments such that, for
al TEFM:a,TEN:a)€Q wehave [[FM:a],;=[+N:da],s Then, for
all valid equationsI' W M = N . a we have

[FT’'EM: aﬂ =[CFN: oc]]pa

Proof.
By induction on the proof of ' M =N : «. O

Thus, if we respect the axioms, then equivalent terms have equal denotational
semantics. This is the minimum we expect from denotational semantics.
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